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I One Particle States in Quantum Theory

Consider a one-particle, configuration-space wave function f(~x ) which is a function of the
spatial variable ~x ∈ R3. A wave function is also called a state, and it is a vector in a Hilbert
space H1 of possible particle states. (We denote a wave function with the letter f , rather
than the usual ψ of non-relativistic quantum theory texts, as we reserve the letter ψ for a
Dirac field.) For now we interpret |f(~x )|2 as the probability density for a particle being
located at the position ~x . Here we assume that the position is a vector in Euclidean 3-space,
but we may at other times replace R3 by an appropriate configuration space, such as a torus
or a lower (or higher) dimensional space.

Two states f, g will have the scalar product

〈f, g〉H1
=
∫

R3
f(~x )g(~x )d~x . (I.1)

Here the notation f(~x ) denotes complex conjugation of the function f(~x ). We call this
the configuration-space representation. This space of one-particle states is the Hilbert space
H1 = L2(R3) of square-integrable functions, obtained by completing the linear space of
smooth functions that vanish outside a bounded region. (Vanishing outside a bounded
region is sometimes called compact support. The completion is with respect to the norm
‖f‖ = 〈f, f〉1/2 determined by this scalar product.) The subscript “1” on H1 specifies that
wave functions f ∈ H1 describe one particle.

A linear transformation T (or operator for short) transforms H1 into H1 and satisfies for
any f, f ′ ∈ H1 and complex λ,

T (f + λf ′) = Tf + λTf ′ . (I.2)

Note that most operators T we encounter in quantum theory (such as position, momentum,
angular momentum, energy, etc.) are only defined for a subset of wave-functions f . In such
a situation one requires the operator to be defined for a dense subset of wave functions,
meaning a set which for any given state f contains a sequence {fn} of states for which
fn → f , as n→∞.

Polarization: In the case of any Hilbert space H, one can express the hermitian scalar
product 〈f, f ′〉 = 〈f ′, f〉 between two distinct vectors f, f ′ as a linear combination of squares
of lengths of vectors. In particular,

〈f, f ′〉 =
1

4

∑
ε4=1

ε̄ ‖f + εf ′‖2
, (I.3)

where the sum extends over the fourth roots of unity, denoted by ε. This relies on the fact
that

∑
ε4=1 ε

n = 0, unless n = 0 (mod 4), in which case the sum is 4. When the functions f, f ′
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are both real, then the inner product 〈f, f ′〉 = 〈f ′, f〉 is symmetric under the interchange of
f with f ′, and one can reduce the polarization identity to a sum over the two terms:

〈f, f ′〉 =
1

4

∑
ε2=1

ε ‖f + εf ′‖2
. (I.4)

Similar formulas hold for matrix elements of a linear transformation T on H. One can
reduce the computation of arbitrary matrix elements 〈f, Tf ′〉 of a linear operator T on H,
to the computation of expectations of T ; the same argument leading to (I.3) and (I.4) also
shows that

〈f, Tf ′〉 =
1

4

∑
ε4=1

ε̄ 〈f + εf ′, T (f + εf ′)〉 , (I.5)

and for real, self-adjoint T ,

〈f, Tf ′〉 =
1

4

∑
ε2=1

ε 〈f + εf ′, T (f + εf ′)〉 . (I.6)

I.1 Continuum States

Continuum states can occur in a scalar product, but they are not normalizable. The Dirac
delta “function” is a very important continuum state. This function δ~x (~x ′) = δ3(~x ′ − ~x )
of ~x ′ is zero everywhere but at the one point ~x , and has total integral one. One says it is
localized at ~x . (Mathematically it is a measure, not a function, and sometimes this is called
a generalized function.) The normalization condition is∫

δ~x (~x ′)d~x ′ = 1 . (I.7)

The delta function localized at ~x has the property that for a continuous wave function f ,

〈δ~x , f〉 = f(~x ) . (I.8)

The delta function δ~a behaves in many ways like an eigenstate of the coordinate operator
with the eigenvalue ~a. In other words the operator ~x ′ (the operator of multiplication by the
coordinate function ~x ′) satisfies the eigenvalue equation,

~x ′δ~a (~x ′) = ~a δ~a (~x ′) . (I.9)

But the square of δ~a does not exist, so δ~a is not a true eigenvector. While there is an
appropriate mathematical theory of the delta function as a generalized eigenfunction, in this
course we will work with the delta function as if it were an eigenfunction.

I.2 The Momentum-Space Representation

The momentum-space representation is related to the configuration-space representation by
Fourier transform. We only indicate the subscript H1 on the scalar product when there may
be a confusion.
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The function f is related to its Fourier transform f̃ , by

f̃(~k ) =
1

(2π)3/2

∫
f(~x )e−i~k ·~x d~x . (I.10)

The Fourier inversion formula says that

f(~x ) =
1

(2π)3/2

∫
f̃(~k )ei~k ·~x d~k . (I.11)

Note that the sign of the exponential is not arbitrary. We choose this in order that the
momentum ~P is the operator

~P = −i∇~x . (I.12)

Here, as everywhere, we use units for which ~ = 1. We will also use units for which the
velocity of light c = 1. One must re-introduce factors of ~ and c when one wants to recover
numerical answers. Note that the Fourier transform of the Dirac delta function δ~x (~x ′) is a

plane-wave function ~k ,

δ̃~x (~k ) =
1

(2π)3/2
e−i~k ·~x . (I.13)

Note also that the factor (2π)−3/2 differs from Coleman’s notes but agrees with the book
by Srednicki. For a Fourier transform on Rd, one would replace (2π)−3/2 by (2π)−d/2. One
makes this choice in order to give Fourier transformation especially nice properties.

In fact Fourier transformation is a linear transformation F on the Hilbert space of square-
integrable functions. This means one can write

f̃ = Ff , or (Ff) (~k ) =
1

(2π)3/2

∫
f(~x )e−i~k ·~x d~x . (I.14)

Linearity means that for any complex constants λ, µ and any two functions f, g,

F(λf + µg) = λFf + µFg . (I.15)

With our normalization, F is a unitary transformation,

F∗F = FF∗ = I . (I.16)

Unitarity also could be written

〈f, g〉 =
〈
f̃ , g̃

〉
= 〈Ff,Fg〉 , (I.17)

for any square-integrable f, g. In fact the Fourier inversion formula says that

F∗ = F−1 = FP , (I.18)

where P denotes the inversion (parity) transformation

(Pf)(~x ) = f(−~x ) . (I.19)

It turns out that the unitarity of F and the form of its inverse (I.18) can be derived
from (and are equivalent to) the completeness of the set of eigenfunctions of the quantum-
mechanical harmonic oscillator! If you are interested to read a full and concise explanation
of these facts, look at the handout called Fourier-Oscillator on the course web site.
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I.3 Dirac Notation

In Dirac notation, one writes the Hilbert space of states H1 in terms of vectors |f ′〉 called
ket-vectors or “kets” and a dual space of vectors 〈f | called bras. Wave functions f and ket
vectors |f〉 correspond to another exactly,

f ↔ |f〉 . (I.20)

Ket vectors are dual (in a conjugate-linear fashion) to bra vectors,

|f〉 ↔ 〈f | . (I.21)

This latter can be written as a hermitian adjoint

〈f | = |f〉∗ , (I.22)

denoted by ∗. In terms of the original wave functions f(~x ), the duality between a ket |f〉
and bra 〈f | just amounts to complex conjugation,

f(~x ) ↔ |f〉 −→ f(~x ) ↔ 〈f | . (I.23)

One pairs a bra 〈f | with a ket |f ′〉 to form a scalar product or bracket 〈f |f ′〉. This is
Dirac’s elegant notation for the original scalar product,

〈f, f ′〉 = 〈f |f ′〉 . (I.24)

One requires that the inner product be hermitian, namely

〈f |f ′〉 = 〈f ′|f〉∗ = 〈f ′|f〉 . (I.25)

Here ∗ or − denotes complex conjugation of the scalar product. (We use ∗ to denote the
hermitian adjoint of a transformation, and acting on functions the two conjugations agree.)

Suppose that T is a linear transformation T acting on the space of (ket) vectors. The
natural correspondence between the ordinary notation and the Dirac notation is to set

T |f〉 = |Tf〉 . (I.26)

The ordinary hermitian-adjoint transformation T ∗ is defined by

〈f ′, T ∗f〉 = 〈Tf ′, f〉 . (I.27)

In Dirac notation, the corresponding definition is

〈f ′|T ∗f〉 = 〈f ′|T ∗|f〉 = 〈Tf ′|f〉 . (I.28)

Therefore the bra corresponding to T |f〉 is

T |f〉 −→ 〈Tf | = 〈f |T ∗ . (I.29)
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I.4 Continuum Eigen-Bras and Kets

Consider the one-particle momentum eigen-kets |~k〉 of the momentum, for which

~P |~k
′
〉 = ~k

′
|~k

′
〉 . (I.30)

This continuum eigenfunction corresponds to the ordinary momentum-space wave function

δ~k ′(~k ) = δ(~k − ~k
′
).

Each ket vector |~k
′
〉 is associated with a dual vector, the bra vector 〈~k

′
|. The scalar

product between two kets |~k〉 and |~k′〉 is given by the bracket

〈~k|~k′〉 = 〈~k′|~k〉∗ . (I.31)

These kets are continuum eigenfunctions, so they cannot be normalized in the usual sense,
for they have infinite length. One normalizes the bras and kets so that

〈~k|~k′〉 = δ3(~k − ~k′) . (I.32)

as one would expect from

〈~k |~k
′
〉 =

〈
δ~k , δ~k ′

〉
=
∫
δ(~k

′′
− ~k ) δ(~k

′′
− ~k

′
) d~k

′′
= δ(~k − ~k

′
) . (I.33)

In the last identity we use δ(~k ) = δ(−~k ).
The Fourier representation of the 3-dimensional delta function is

δ3(~x ) =
1

(2π)3

∫
ei~k·~x d3~k . (I.34)

We also assume that the ket vectors |~k〉 form a complete set of one-particle states. Com-
pleteness can be written as the condition∫

|~k〉〈~k| d3~k = I . (I.35)

In Dirac notation, one can use a wave packet f̃(~k), i.e. a momentum space wave function

that is a square-integrable function of ~k, to define a ket vector |f̃〉 with finite length. The
wave packet defines a ket

|f̃〉 =
∫
f̃(~k) |~k 〉 d3~k . (I.36)

The corresponding bra vector is

〈f̃ | =
∫
f̃(~k )∗ 〈~k | d~k . (I.37)

The completeness relation gives us the relation between the notation in the standard
(momentum) representation and the Dirac notation. Pairing the ket (I.36) with the bra 〈~k |
gives

f̃(~k) = 〈~k|f̃〉 . (I.38)
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The Dirac scalar product of a bra and a ket defined by two wave packets f̃ and g̃ coincides
exactly with the scalar product of the wave packets in terms of the standard wave functions.
The standard momentum space inner product is

〈
f̃ , f̃ ′

〉
=
∫
f̃(~k )∗ f ′(~k )d~k , (I.39)

which in Dirac notation is

〈f̃ |f̃ ′〉 =
∫
〈f |~k 〉〈~k |f ′〉d~k =

∫
f̃(~k ) f ′(~k )d~k . (I.40)

I.5 Configuration-Space Eigenkets

Given the wave function f̃ = Ff , and the ket |f̃〉 of the form (I.36), we look for a ket |~x 〉〉
such that2

f(~x ) = 〈〈~x |f̃〉 . (I.41)

In fact

f(~x ) =
1

(2π)3/2

∫
ei~x ·~k f̃(~k )d~k =

1

(2π)3/2

∫
ei~x ·~k 〈~k |f̃〉d~k , (I.42)

so that

〈〈~x | = 1

(2π)3/2

∫
〈~k | ei~k·~x d3~k , and |~x 〉〉 =

1

(2π)3/2

∫
|~k 〉 e−i~k·~x d3~k . (I.43)

With these configuration-space eigen-kets, one infers from (I.32) that

〈〈~x |~k 〉 =
1

(2π)3/2
ei~k·~x , and 〈〈~x |~x ′〉〉 =

1

(2π)3

∫
ei~k ·(~x−~x ′)d~k = δ3(~x − ~x ′) . (I.44)

We also have a completeness relation expressed in terms of the configuration space vec-
tors. In fact, ∫

|~x 〉〉〈〈~x | d~x =
∫
|~k 〉〈~k | d~x = I . (I.45)

From the completeness relations, one has |f〉〉 =
∫
f(~x )|~x 〉〉 d~x =

∫
|~x 〉〉 〈〈~x |f̃〉d~x = |f̃〉 , or

|f〉〉 =
∫
f(~x )|~x 〉〉 d~x =

∫
f̃(~k )|~k 〉d~k = |f̃〉 . (I.46)

In other words, we express the vector |f〉〉 in terms of two bases |~x 〉 or |~k 〉, with coefficents

f(~x ) and f̃(~k ) respectively.

2Here we distinguish position space kets from momentum space kets by using a double bracket | · 〉〉 in
place of | · 〉. In case there is no chance of confusion, we drop this double bracket.
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I.6 Energy, Momentum, and Mass

The mass m of the free particle under consideration enters when we introduce the time
evolution. We take for the energy (or Hamiltonian H) the expression

H =
(
~P 2 +m2

)1/2
. (I.47)

This is the standard energy-momentum relation in special relativity, when we take units with
c = 1.

Using the quantum-mechanical form of the momentum as the operator ~P = −i∇~x as
given in (I.12), one can write

H =
(
~P 2 +m2

)1/2
=
(
−~∇2

~x +m2
)1/2

= ω . (I.48)

We use the symbol ω to denote the energy H restricted to the space of a single particle.
One defines the time evolution of the free one-particle wave function as the solution to
Schrödinger’s equation (with ~ = 1),

ft = e−itHf = e−itωf . (I.49)

Here f is the time-zero wave function.
One can solve this equation using Fourier transformation. In the momentum representa-

tion, the momentum operator multiplies the wave function f̃(~k ) by the function ~k , and the

energy operator multiplies the wave function by the function ω(~k ) =
(
~k

2
+m2

)1/2

. Thus

the Fourier transform on ft(~x ) is

f̃t(~k ) = e−itω(~k )f̃(~k ) . (I.50)

It is also natural to define the “mass” operator as the positive square root,

M =
√
H2 − ~P 2 . (I.51)

The kets |~k 〉 are eigenstates of M , namely

M |~k 〉 = m|~k 〉 . (I.52)

As a consequence, the vectors

|f̃〉 =
∫
f̃(~k )|~k 〉 d~k , (I.53)

are also eigenvectors of M , as are the time-dependent vectors U(t)∗|f̃〉 = e−itω|f̃〉. Similarly

M |~x 〉〉 = m|~x 〉〉 . (I.54)

The value of the rest mass m enters the calculation through the definition of H for a free
particle. If H had a more complicated form, it might not be so easy to identify eigenstates
of the mass M .
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I.7 Group Representations

Let G denote a group with elements g and identity e. A representation U(g) of the group
on the Hilbert space H1 is a mapping g 7→ U(g) from the group to linear transformations on
H1 with the properties,

U(g1)U(g2) = U(g1g2) , and U(e) = I . (I.55)

As a consequence, U(g)−1 = U(g−1), and in case U(g) is unitary, then

U(g)∗ = U(g−1) . (I.56)

In quantum theory we generally consider unitary representations, as they conserve probabil-
ities and transition amplitudes. Furthermore, when the group G is parameterized by some
continuous parameters, we want the representation U(g) to depend continuously on these
parameters. (Technically we require strong continuity.)

In some cases the group G acts on configuration space according to ~x 7→ g~x . A couple
of elementary cases of this phenomenon are spatial translations and spatial rotations. If the
measure d~x is also invariant under the group, namely gd~x = d~x for all g ∈ G, then the
transformations U(g) defined by

(U(g)f) (~x ) = f(g−1~x ) , (I.57)

give a unitary representation of G on H1. We now show that

U(g)|~x 〉〉 = |g~x 〉〉 . (I.58)

Equivalently, using the relation (I.29), it is sufficient to verify that

〈〈g~x | = 〈〈~x |U(g)∗ . (I.59)

From (I.41) one has
f(g−1~x ) = 〈〈g−1~x |f〉〉 , (I.60)

while from (I.57) one has
f(g−1~x ) = 〈〈~x |U(g)f〉〉 . (I.61)

This is true for any f , so 〈〈g−1~x | = 〈〈~x |U(g). Replacing g by g−1, and using the unitarity
of U(g), one has U(g−1) = U(g)∗, so

〈〈g~x | = 〈〈~x |U(g−1) = 〈〈~x |U(g)∗ . (I.62)

But this is just the claimed relation (I.59), so (I.58) holds. Similarly one has

U(g)|~k 〉 = |g~k 〉 . (I.63)

It may be possible to find a unitary representation of G on H1, even if G does not act on
configuration space with d~x invariant. This is the case for a Lorentz boost. That unitary
representation is given in the second homework problem. We have shown in class that
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every proper, time-direction preserving Lorentz transformation Λ can be written uniquely as
Λ = BR, where R is proper rotation and B is a pure boost. As a result, one recovers a unitary
representation U(a,Λ) of the Poincaré group on H1. This representation is irreducible;
namely it leaves no proper subspace of H1 invariant. This is the standard mass-m, spin-0
irreducible representation of the Poincaré group.

For the space-time translation subgroup (a, I) of the Poincaré group, we define

U(a) = U(a, I) = eia0H−i~a ·~P . (I.64)

Acting on the one-particle space, this gives

U(a)|~k 〉 = eia0ω(~k )−i~a ·~k |~k 〉 . (I.65)

In configuration space, (I.43) shows that space-time translations have the effect,

U(a)|~x 〉〉 = eia0ω|~x + ~a 〉〉 . (I.66)

We use this as our standard sign convention for the direction of space-time translations. In
terms of the Schrödinger equation, it is the adjoint U(t)∗ = U(t,~0)∗ that gives the standard
solution ft = U(t)∗f = e−itωf . As a consequence of the convention (I.66), the relation (I.57)
shows that

(U(t,~a )f)(~x ) = f−t(~x − ~a ) . (I.67)

I.8 Lorentz Transformations

Here we analyze proper Lorentz transformations Λ that preserve the direction of time. A
Lorentz transformation Λ is a real, 4× 4-matrix that preserves the Minkowski square of the
four-vector x = (t, ~x ). Denote the components of x by xµ with t = x0, and the Minkowski
square as x2

M = t2 − ~x 2 = xµgµνx
ν . The Lorentz transformation acts on space-time as

xµ =
∑
ν

Λµνx
ν . (I.68)

Thus as a matrix equation the condition of preserving the Minkowski length is

〈x, gx〉 = 〈Λx, gΛx〉 , (I.69)

or
ΛTgΛ = g . (I.70)

Here ΛT denotes the transpose of Λ, and g is the metric,

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (I.71)

From this identity we see that det Λ2 = 1. Those Λ with determinant +1 are called proper,
and those that perserve the direction of time have Λ00 > 0.
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Proposition I.1. Every proper, time-preserving Lorentz transformation has a unique de-
composition Λ = BR, where R is a pure rotation in 3-space about an axis ~n by angle θ and
B is a Lorentz boost along some 3-space direction ~n′ with rapidity χ.

One can see this in many ways. One convenient way involves the beautiful relation
between the quaternions and the geometry of Minkowski space. Quaternions were discovered
in 1843 by William Hamilton, perhaps Ireland’s most famous scientist. He was looking for
a generalization of complex numbers to a higher dimension. He found the algebra i2 = j2 =
k2 = ijk = −1. From a modern point of view we represent these relations by four self-adjoint
2 × 2-matrices τµ taken as the four-vector. Up to a factor

√
−1, they also equal the Pauli

matrices σj, complemented by the identity τ0.

τ =

((
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
= (τ0, τ1, τ2, τ3) = (I, σ1, σ2, σ3) . (I.72)

There is a 1-1 correspondence between points x in Minkowski space corresponds and 2× 2-
hermitian matrices x̂. This is given by

x̂ =
3∑

µ=0

xµτµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (I.73)

with the inverse relation

xµ =
1

2
Tr (τµx̂) . (I.74)

Note that
det x̂ = x2

M . (I.75)

The Lorentz transformations act on the matrices x̂. Three properties characterize maps
x̂ 7→ x̂′ that arise from Lorentz transformations:

i. The transformation must be linear in x̂.

ii. The transformation must map hermitian x̂ to hermitian x̂′.

iii. The transformation must preserve the determinant det x̂ = x2
M = det x̂′.

The most general transformation satisfying (i) has the form

x̂ −→ x̂′ = Λ̂x = Ax̂B∗ , (I.76)

where A and B are non-singular 2 × 2-matrices. Not every non-singular A and B leads to
properties (ii–iii). The restriction that x̂′ is hermitian (for hermitian x̂) means that

(Ax̂B∗)∗ = Bx̂A∗ = Ax̂B∗ . (I.77)

In other words, the transformation T = A−1B must satisfy T x̂ = x̂T ∗, for all hermitian x̂.
Taking x̂ = I ensures that T = T ∗. Therefore T x̂ = x̂T for all 2 × 2, hermitian matrices.
Such T must be a real multiple λ of the identity and (I.76) becomes

x̂ −→ x̂′ = λAx̂A∗ = Λ̂x . (I.78)
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Furthermore, any time-like vector x can be reduced by a boost to (x0,~0), and in this case

x′0 = λx0
1

2
Tr(AA∗) . (I.79)

As Tr(AA∗) > 0, we infer that x′0 is a positive multiple of x0 for λ > 0, and the direction of
time is reversed for λ < 0. As we are analyzing the time-direction preserving case, we are
considering λ > 0, so there is no loss of generality in absorbing λ1/2 into A. Thus we are
reduced to the relation

x̂ −→ x̂′ = Ax̂A∗ . (I.80)

Condition (iii) ensures that |detA|2 = 1, so after multiplying A by a phase, which does not
change the transformation (I.80), we are reduced to the case detA = 1.

In other words A is an element of the group SL(2,C) of non-singular 2 × 2 complex
matrices with determinant 1. Every element A of SL(2,C) has a unique polar decomposition,

A = HU , (I.81)

where H is a positive hermitian matrix and U is unitary. In fact H is the positive square
root,

H = (AA∗)1/2 , and U = H−1/2A . (I.82)

We complete the proof of Proposition I.1 by showing that a unitary matrix A leads to a
rotation (which preserves x0 = t), while a positive, hermitian matrix A leads to a Lorentz
boost along some axis.

In fact, if A = U is unitary, then (I.74) says that

x′0 =
1

2
Tr(IUx̂U∗) =

1

2
Tr(Ux̂U∗) =

1

2
Tr(x̂) = x0 . (I.83)

In other words, Λ0ν = δ0ν , which characterizes a pure rotation. In particular, the unitary

U = ei(θ/2)σ3 =

(
eiθ/2 0

0 e−iθ/2

)
, (I.84)

gives rise to a rotation by angle θ in the (x1, x2) plane. One sees that

x′3 =
1

2
Tr (σ3Ux̂U

∗) =
1

2
Tr (Uσ3x̂U

∗) =
1

2
Tr (σ3x̂) = x3 , (I.85)

so the rotation is about the axis x3. Then as σ1σ3 = −σ3σ1, also

x′1 =
1

2
Tr (σ1Ux̂U

∗) =
1

2
Tr (U∗σ1Ux̂) =

1

2
Tr
(
σ1U

2x̂
)

= x1
1

2
Tr(U2) + x2

1

2i
Tr(U2σ3)

= x1 cos θ + x2 sin θ . (I.86)

Here the x3 term vanishes, as Tr(σ1U
2σ3) = iTr(Uσ3).

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



Scalar Bosons 13

On the other hand, if A = H is positive and hermitian, then A can be diagonalized by a
unitary A = UDU∗, where D is diagonal, has positive eigenvalues, and determinant one (as
A and U have determinant 1). Thus

D =

(
eχ/2 0
0 e−χ/2

)
= e(χ/2)σ3 , (I.87)

for some real χ. We claim that x̂ 7→ x̂′ = Dx̂D is the boost along the z axis, given by

x′0 = x0 coshχ+x3 sinhχ , x′1 = x1 x′2 = x2 , and x′3 = x0 sinhχ+x3 coshχ . (I.88)

Using Tr(Dσ1) = Tr(Dσ2) = 0, the value of x′0 follows from (I.74) as

x′0 =
1

2
Tr(Dx̂D) =

1

2
Tr(D2x̂) =

x0

2
Tr(D2) +

x3

2
Tr(D2σ3) = x0 coshχ+ x3 sinhχ . (I.89)

Also the Pauli matrices satisfy σ3σ1 = −σ1σ3. Thus the relation (I.74) gives

x′1 =
1

2
Tr(σ1Dx̂D) =

1

2
Tr(Dσ1Dx̂) =

1

2
Tr(σ1D

−1Dx̂) =
1

2
Tr(σ1x̂) = x1 . (I.90)

Checking the values of x′2 and x′3 is similar.

Poincaré Transformations: The Poincaré group is a (semi-direct) product of the Lorentz
group (given by matrices Λ) with space-time translations b indexed by vectors in Minkowski
4-space, b ∈ M4. One writes an element of the group as (b,Λ), and the group acts on
Minkowski space by first making a Lorentz transformation, then a space-time translation,

(b,Λ)x = Λx+ b . (I.91)

The multiplication law for the Poincaré group is

(b1,Λ1) (b2,Λ2) = (b1 + Λ1b2,Λ1Λ2) . (I.92)

The inverse element to (b,Λ) is

(b,Λ)−1 = (−Λ−1b, Λ−1) , or x = (b,Λ)
(
Λ−1 (x− b)

)
. (I.93)

The non-trivial unitary representations of the Poincaré group on a Hilbert space are
infinite dimensional. The space-time translation subgroup U(b) = U(b, I) can be written

in the form U(b) = eib0H−i~b·~P , defining an energy H and momentum ~P as its infinitesimal

generators. The four components of the energy-momentum vector (H, ~P ) commute, as the
space-time translation group is abelian. The mass operator M is defined as the positive

square root M =
(
H2 − ~P 2

)1/2
. Likewise the representation of the subgroup of rotations of

three space about an axis ~n by an angle θ can be written as U(~n, θ) = eiθ~n· ~J , defining the

components of the angular momentum operators ~J .
The irreducible, positive energy representations of the Poincaré group were classified in a

famous paper by Wigner. They are characterized by two quantum numbers: (m, s), namely
mass and spin. The mass m is a non-negative number in [0,∞) which is an eigenvalue of
M , while the spin is a non-negative half-integer s for which s(s + 1) is an eigenvalue of
~J2 = J2

1 + J2
2 + J2

3 . The scalar representation corresponds to a particle of spin-0 and mass
m ≥ 0. There are two inequivalent spin-1/2 representations of the proper group, and these
are mixed by the reflections of the full Poincaré group.
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Vectors in Minkowski Space: There are three types of 4-vectors in Minkowski space:

• Spacelike Vectors: A vector x is space like if x2
M < 0.

• Null Vectors: A vector x is null if x2
M = 0.

• Time-Like Vectors: A vector x is time-like if x2
M > 0.

Two points x, x′ are said to be space-like separated if x− x′ is a space-like vector.

Proposition I.2. If x, x′ are space-like separated, then there is a Lorentz transformation
ΛB that brings x, x′ to the same time, a Lorentz transformation Λ that inverts x− x′, and a
Poincaré transformation (b,Λ) that interchanges x with x′. In other words

(ΛBx)0 = (ΛBx
′)0 , Λ(x− x′) = (x′ − x) , (b,Λ)x = x′ , and (b,Λ)x′ = x .

(I.94)
These transformations depend on x and x′.

Proof. The condition that x − x′ is space-like means that
∣∣∣~x − ~x ′

∣∣∣ > |x0 − x′0|. Therefore

these exists a real number χ such that tanhχ = (x0−x′0)/
∣∣∣~x − ~x ′

∣∣∣. Let ΛB denote a Lorentz

boost with rapidity −χ along ~x −~x ′. Then ΛB(x−x′) has zero time component, or x0 = x′0.
Let ΛBx = y and ΛBx

′ = y′, so the vector y − y′ = (~y − ~y ′, 0) has zero time component.
Let ~n be any 3-vector orthogonal to ~y−~y ′, and let ΛR denote the Lorentz transformation

of rotation by angle π about the axis n. This reverses the vector ~y−~y ′, so the transformation
Λ = Λ−1

B ΛRΛB reverses x − x′. In order to exchange x with x′, one must perform these
operations in a coordinate system translated os the rotation takes place midway between
~y and ~y′; therefore the rotation ΛR exchanges ~y with ~y′. In order to do this, let c =
((~y − ~y′ )/2, 0). Then the composition of four Poincaré transformations that interchanges x
with x′ is

(0,Λ−1
B ) (0,ΛR) (c, I) (0,ΛB) = (0,Λ−1

B ) (ΛRc,ΛRΛB) = (Λ−1
B ΛRc,Λ) . (I.95)

Thus b = Λ−1
B ΛRc = Λ(x− x′)/2.

I.9 States and Transition Amplitudes

Consider the state
|x〉〉 = |~x , t〉〉 = eitω|~x 〉〉 . (I.96)

In other words, |x〉〉 = U(t)|~x 〉〉 where U(t) = eitω is the time translation subgroup for
the free, scalar particle of mass m, generated by the Hamiltonian H = ω. It has the initial
value (time-zero value) equal to |~x 〉〉 . It gives rise to the usual solution to the Schrödinger
equation,

ft(~x ) =
(
e−itωf

)
(~x ) = 〈〈~x | e−itω|f〉〉 = 〈〈x|f〉〉 . (I.97)

This state also satisfies the massive wave equation

(
� +m2

)
|~x , t〉〉 = 0 . (I.98)
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Here � denotes the wave operator

� =
∂2

∂t2
−∇2

~x =
∂2

∂t2
−

3∑
j=1

∂2

∂x2
j

. (I.99)

The massive wave equation is a linear wave equation for the states of a relativistic particle
of mass m. The equation (I.98) is also known as the Klein-Gordon equation.

Define the transition amplitude

K(x;x′) = 〈〈x|x′〉〉 . (I.100)

We could also write K as a function of the difference vector x−x′ and define it as a function
of a single four vector ξ = x− x′, namely

K(x− x′) = K(x;x′) = 〈〈~x | e−i(t−t′)H |~x ′〉〉 = 〈〈0|e−i(t−t′)H+i(~x−~x ′)·~P |0〉〉 . (I.101)

We now study

K(x) = 〈〈0| e−itω+i~x ·~P |~0〉〉 . (I.102)

Since the energy ω > 0, the function K(x) extends to a function analytic in the lower-half
t-plane. Let Kε(x) = K(~x, t− iε). Then

K(x) = lim
ε→0+

Kε(x) = lim
ε→0+

1

(2π)3

∫
e−i(t−iε)ω(~k )+i~k ·~x d3~k . (I.103)

One can find another representation of K for r = |~x | > |t|, namely for x a space-like 4-vector.

In this case one can evaluate (I.103). Take k =
∣∣∣~k ∣∣∣ ≥ 0, so

K(r, t) = lim
ε→0+

1

(2π)2

∫ ∞

0
dk k2

∫ π

0
dθ sin θ e−i(t−iε)ω(k)+ikr cos θ

= lim
ε→0+

−i
(2π)2 r

∫ ∞

0
dk ke−i(t−iε)ω(k)

(
eikr − e−ikr

)
= lim

ε→0+

−i
(2π)2 r

∫ ∞

−∞
e−i(t−iε)ω(k)eikr k dk . (I.104)

One can transform this integral into the integral of a positive function, times a phase, by
deforming the k integration from the real axis to a contour in the upper-half complex k-plane
(where the integrand decays). Ultimately one can move it around the interval i[m,∞) on
the positive, imaginary axis. At the point k = is, with s > m, the function ω(k) = ω(is) =
i
√
s2 −m2 on the right side of the cut and −i

√
s2 −m2 on the left. Thus

K(r, t) = −i 1

2π2r

∫ ∞

m
sinh

(
t
√
s2 −m2

)
e−srs ds . (I.105)

Note the condition r > |t| ensures convergence of the integral in (I.105), and iK(r, t) > 0.
For r > |t|, it is the case that K(r, t) → 0 as t → 0. (On the other hand, the t = 0

value of K(~x, 0) is not identically zero, since K(~x , 0) = δ3(~x ).) Rhe initial value of the time
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derivative (also needed to specify a solution to the Klein-Gordon equation) is a nowhere-
vanishing function of ~x , namely

lim
t→0

∂K(r, t)

∂t
= −i 1

2πr

∫ ∞

m

√
s2 −m2e−rss ds 6= 0 . (I.106)

This explains the instantaneous spread of the transition amplitude to all non-zero ~x when
t 6= 0. One should not attribute this effect to acausal propagation, nor the necessity to study
multi-particle production, as one finds in many books! It arises from the positive-energy
nature of the solution K(r, t) and the non-local character of the energy operator ω.

II Two Particles

The interpretation of particles as arising from a field includes the possibility of multi-particle
states. Thus we need not only to consider the wave function for one particle, but also the
wave function for multi-particle states. Let us begin with two scalar particles. So we need
to define a Hilbert space of two-particle wave functions H2. The vectors in this space are
functions f of two vector variables ~x 1, ~x 2, and the scalar product in the two particle space
given by

〈f, f ′〉2 =
∫
f(~x 1, ~x 2) f

′(~x 1, ~x 2) d~x 1 d~x 2 . (II.1)

Here we use a subscript 2 on the inner product 〈 ·, · 〉2 to indicate that we are considering
the two-particle space H2; we also write 〈 ·, · 〉1 for the scalar product in H1. When there is
no chance of ambiguity, we may omit these subscripts.

In the momentum representation one has similar expressions. Given a two-particle
configuration-space wave function f(~x1 , ~x2 ), the two-particle wave function in momentum
space has the form

f̃(~k1 , ~k2 ) = (Ff)(~k1 , ~k2 ) =
1

(2π)3

∫
f(~x1 , ~x2 )e−i(~k1 ·~x1 +~k2 ·~x2 )d~x1 d~x2 , (II.2)

and the inverse Fourier transform is

f(~x1 , ~x2 ) =
1

(2π)3

∫
f̃(~k1 , ~k2 )ei(~k1 ·~x1 +~k2 ·~x2 )d~k1 d~k2 . (II.3)

The Fourier transform is unitary for the two-particle states, and

〈f, f ′〉2 =
〈
f̃ , f̃ ′

〉
2

(II.4)

II.1 The Tensor Product

Given two single-particle wave functions, there is a natural way to combine them to obtain
a two-particle wave function. Given f1(~x 1) and f2(~x 2), the simplest combination is the
product wave function

f(~x 1, ~x 2) = f1(~x 1) f2(~x 2) . (II.5)

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



Scalar Bosons 17

This is called the tensor product. One denotes the tensor product wave function by the
multiplication sign multiplication sign “⊗”, so the tensor product of the wave function f1

with the wave function f2 is f1 ⊗ f2. The values of the tensor-product wave function are

(f1 ⊗ f2) (~x 1, ~x 2) = f1(~x 1) f2(~x 2) . (II.6)

The inner product of two different tensor-product wave functions f1 ⊗ f2 and f ′1 ⊗ f ′2 is

〈f1 ⊗ f2, f
′
1 ⊗ f ′2〉2 = 〈f1, f

′
1〉1 〈f2, f

′
2〉1 . (II.7)

Note that f1 ⊗ f2 6= f2 ⊗ f1. Furthermore, it is clear that not every two-particle wave
function f(~x 1, ~x 2) can be written as a tensor product of two one-particle wave functions.
However we can obtain a general two-particle wave function as a limit of sums of product
wave functions. In particular, if {ej} for j = 0, 1, 2, . . . is an ortho-normal basis for the
one-particle wave functions in H1, then the vectors ei ⊗ ej are a basis for H2. Note that

〈ei ⊗ ej, ei′ ⊗ ej′〉2 = δii′δjj′ , (II.8)

so the vectors ei ⊗ ej are ortho-normal. Thus every general two-particle wave function can
be written as a limit,

f =
∞∑

i,j=0

cij ei ⊗ ej , (II.9)

where the coefficients can be obtained by taking the inner product with ei ⊗ ej, namely

cij = 〈ei ⊗ ej , f〉2 . (II.10)

For two different two-particle functions f and f ′, one can express the inner product as

〈f, f ′〉2 =
∞∑

i,j=0

cij c
′
ij . (II.11)

Thus the norm squared of a general two-particle state f is

‖f‖2
2 = 〈f, f〉2 =

∑
ij

|cij|2 . (II.12)

A square-integrable two-particle state f corresponds to a square summable sequence {cij}.

II.2 Dirac Notation for Two-Particle States

The Dirac notation for the ket vector corresponding to the tensor product is

f1 ⊗ f2 −→ |f1〉|f2〉 . (II.13)

The bra vector corresponding to this ket is

|f1〉|f2〉 −→ 〈f2|〈f1| . (II.14)

Notice that the order of the labels has been reversed, in a similar fashion to taking the
hermitian adjoint of a matrix. This reversal is natural, as it gives rise to the scalar product
(II.7), namely

〈f2|〈f1|f ′1〉|f ′2〉 = 〈f1|f ′1〉 〈f2|f ′2〉 . (II.15)
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II.3 Tensor Products of Operators

Given two operators T and S, each acting on the one-particle space H1, we can define the
tensor product operator T ⊗ S that acts on the two-particle space. On any product wave
function f1 ⊗ f2 ∈ H2, with f1, f2 ∈ H1, define the linear transformation T ⊗ S as

(T ⊗ S) (f1 ⊗ f2) = Tf1 ⊗ Sf2 . (II.16)

In particular, (T ⊗ I) (f1 ⊗ f2) = Tf1 ⊗ f2, and also (I ⊗ S) (f1 ⊗ f2) = f1 ⊗ Sf2. For a
general vector f ∈ H2 of the form (II.9), one has as a consequence of linearity,

(T ⊗ S) f =
∑
i,j

cij (Tei ⊗ Sej) . (II.17)

The operator T ⊗ I is a special case of a tensor product operator that acts on the first
wave function only. Likewise I ⊗ S acts on the second wave function only. In general two
tensor product operators obey the multiplication law

(T1 ⊗ S1) (T2 ⊗ S2) = (T1T2 ⊗ S1S2) . (II.18)

Accordingly, any tensor product operator can be written as a product of an operator acting
on each variable,

T ⊗ S = (T ⊗ I) (I ⊗ S) . (II.19)

The matrix elements on the basis {ei⊗ ej} of a tensor product operator T ⊗S on H2 are
given by the tensor with four indices. This tensor is the product of the matrices for the two
one-particle operators. Namely (T ⊗ S)ij i′j′ = 〈ei ⊗ ej , (T ⊗ S) (ei′ ⊗ ej′)〉2, so that

(T ⊗ S)ij i′j′ = Tii′ Sjj′ . (II.20)

A general operator X on H2 cannot be expressed as a tensor product of two one-particle
operators. (For example, the operator T ⊗ I + I ⊗ T is not a tensor product operator, but
a sum of two.) However, a general operator X is a limit of finite sums of tensor product
operators, and it has the form

X =
∑
αβ

xαβ Tα ⊗ Sβ , (II.21)

for some coefficients xαβ. Such a general operator acts on a tensor product state as

Xf1 ⊗ f2 =
∑
αβ

xαβ Tαf1 ⊗ Sβf2 . (II.22)

We can express this relation in Dirac notation (I.26) and (II.13) as

X|f1〉|f2〉 =
∑
αβ

xαβ |Tαf1〉|Sβf2〉 . (II.23)
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II.4 An Operator on H1 Gives Operators on H2

Rather than considering the tensor product of two general operators as in §II.3, there are
two very standard ways to take a single operator T acting on H1 and to produce an operator
T2 on H2.

The first standard method is the multiplicative action,

T2 = T ⊗ T . (II.24)

In case that T is unitary on H1, then T ⊗ T is a unitary on H2. For example, this gives the
unitary Fourier transform on H2

F2 = F⊗ F , (II.25)

or the unitary Poincaré symmetry on H2

U2(a,Λ) = U(a,Λ)⊗ U(a,Λ) . (II.26)

The second standard method is the additive action. If S is an operator on H1 define the
additive operator,

S2 = S ⊗ I + I ⊗ S . (II.27)

on H2. This method is suitable if S is a quantity such as the momentum ~P , angular mo-
mentum ~L, or energy ω of a non-interacting pair of particles. For example,

~P2 = ~P ⊗ I + I ⊗ ~P , (II.28)

and
~P2 (f1 ⊗ f2) =

(
~P ⊗ I + I ⊗ ~P

)
(f1 ⊗ f2) = ~Pf1 ⊗ f2 + f1 ⊗ ~Pf2 . (II.29)

In particular, if f1, f2 are momentum eigenkets |~k 1〉 and |~k 2〉 respectively, then ~P2 agrees
with its interpretation as the total momentum,

~P2 |~k 1〉|~k 2〉 =
(
~k 1 + ~k 2

)
|~k 1〉|~k 2〉 . (II.30)

II.5 Two Identical Bosons

%subsectionWave Functions When considering two particles which are identical bosons, it
is useful to build into the space of wave functions the symmetry under interchange of the
particles. This means that we restrict H2 to a bosonic subspace by restricting attention to
the two-particle wave functions f(~x 1, ~x 2) that obey the symmetry condition,

f(~x 1, ~x 2) = f(~x 2, ~x 1) . (II.31)

Clearly a linear combination of two symmetric wave functions is symmetric, so the symmetric
two-particle wave functions form a linear subspace of the two-particle wave functions. We
denote the symmetric (bosonic) subspace by

Hb
2 ⊂ H2 . (II.32)
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In general, a tensor product f1 ⊗ f2 of wave functions is a bosonic symmetric state only
if f1 is a multiple of f2. Thus it is useful to introduce a symmetrized tensor product ⊗s that
ensures (II.31). All quantum field theory books use the two-particle symmetric (or bosonic)
tensor product

(f1 ⊗s f2) (~x 1, ~x 2) =
1√
2

(f1(~x1 )f2(~x2 ) + f1(~x2 )f2(~x1 )) . (II.33)

Alternatively one can write in tensor product notation

f1 ⊗s f2 =
1√
2

(f1 ⊗ f2 + f2 ⊗ f1) , so f1 ⊗s f2 = f2 ⊗s f1 ∈ Hb
2 . (II.34)

Two symmetric tensor product wave functions have the scalar product3

〈f1 ⊗s f2, f
′
1 ⊗s f

′
2〉2 = 〈f1, f

′
1〉1 〈f2, f

′
2〉1 + 〈f1, f

′
2〉1 〈f2, f

′
1〉1 , (II.36)

in place of (II.7). The space Hb
2 is spanned by the symmetrized basis vectors

ei ⊗s ej =
1√
2

(ei ⊗ ej + ej ⊗ ei) . (II.37)

Note that these vectors are orthogonal, but not normalized, as

〈ei ⊗s ej , ei′ ⊗s ej′〉2 = δii′δjj′ + δij′δi′j . (II.38)

This vanishes unless the unordered pair of values {i, j} equals the unordered pair of values
{i′, j′}. But in case it is nonzero, it equals 1 in case i 6= j, and it equals 2 in case i = j.
Thus we can define the ortho-normal basis elements for Hb

2 as

eij =
1√

1 + δij
ei ⊗s ej . (II.39)

An arbitrary element F ∈ Hb
2 is a symmetric, square integrable wave function

F (~x 1, ~x 2) = F (~x 2, ~x 1) has expansion in term of the basis vectors as

F =
∑
i,j

cij eij , with cij = 〈eij , F 〉2 . (II.40)

Then for two such general bosonic two particle functions satisfy

〈F, F ′〉2 =
∫
f(~x 1, ~x 2) f

′(~x 1, ~x 2) d~x 1d~x 2 =
∑
ij

cij c
′
ij . (II.41)

3Note that the physics normalization convention of using
√

2 in (II.34) is really a definition. It differs
from the normalization in many mathematics books, where one often finds f1 ⊗s f2 = 1

2 (f1 ⊗ f2 + f2 ⊗ f1),
yielding the natural relation f ⊗s f = f ⊗ f , and also

〈f1 ⊗s f2, f
′
1 ⊗s f ′2〉 =

1
2
〈f1, f

′
1〉1 〈f2, f

′
2〉1 +

1
2
〈f1, f

′
2〉1 〈f2, f

′
1〉1 . (II.35)

This differs from (II.36) by a factor 1/2; in the case of n particles a relative factor of 1/n! arises.
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II.6 Dirac Notation for Two Identical Bosons

We use the following Dirac notation for the symmetrized product state of two bosons,

|f1, f2〉〉 =
1√
2
|f1〉〉 |f2〉〉 +

1√
2
|f2〉〉 |f1〉〉 . (II.42)

When there may be ambiguity about whether the state is bosonic, we write |f1, f2〉〉b instead
of |f1, f2〉〉 . Similarly, define the continuum, configuration-space states

|~x 1, ~x 2〉〉 =
1√
2
|~x 1〉〉 |~x 2〉〉 +

1√
2
|~x 2〉〉 |~x 1〉〉 , (II.43)

so

〈〈~x 1, ~x 2|~x ′1, ~x
′
2〉〉2 = δ

(
~x 1 − ~x ′1

)
δ
(
~x 2 − ~x ′2

)
+ δ

(
~x 1 − ~x ′2

)
δ
(
~x 2 − ~x ′1

)
. (II.44)

A short calculation shows that

〈〈~x 1, ~x 2|f1, f2〉〉2 = f1(~x 1)f2(~x 2) + f1(~x 2)f2(~x 1) =
√

2f1 ⊗s f2 . (II.45)

Note the factor
√

2. This relation extends by linearity to linear combinations of vectors of
the form |f1, f2〉〉 , and therefore for any vector |F 〉〉2 ∈ Hb

2 one has,

F (~x 1, ~x 2) =
1√
2
〈〈~x 1, ~x 2|F 〉〉2 . (II.46)

Comparing this identity with (II.41), we infer that on the two-particle space Hb
2,

Eb
2 =

1

2

∫
|~x 1, ~x 2〉〉〈〈~x 1, ~x 2| d~x 1 d~x 2 = I . (II.47)

The operator Eb
2 also acts on all ofH2, and when applied to vectors inH2 that are orthogonal

to Hb
2, it gives 0.4

In terms of these wave functions for two symmetric tensor products,

f̃(~k 1, ~k 2) =
1√
2
f1(~k 1) f2(~k 2) +

1√
2
f1(~k 2) f2(~k 1) , (II.50)

one has 〈
f̃ , f̃ ′

〉
2

=
∫
f̃(~k 1, ~k 2)

∗f̃ ′(~k 1, ~k 2) d~k 1d~k 2 . (II.51)

4A short calculation shows that any anti-symmetric (fermionic) state of the form

|f ′1, f ′2〉〉f =
1√
2
|f ′1〉|f ′2〉 −

1√
2
|f ′2〉|f ′1〉 = −|f ′2, f ′1〉〉f , (II.48)

is orthogonal has scalar product 0 with every vector in Hb
2. Also |~x 1, ~x 2〉〉 = |~x 1, ~x 2〉〉b satisfies

b〈〈~x 1, ~x 2|f ′1, f ′2〉〉f = 0 , and Eb
2|f ′1, f ′2〉〉f = 0 . (II.49)
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|f1, f2〉 =
1√
2
|f1〉|f2〉+

1√
2
|f2〉|f1〉 , (II.52)

and

|~k 1, ~k 2〉 =
1√
2
|~k 1〉|~k 2〉+

1√
2
|~k 2〉|~k 1〉 , (II.53)

so

〈~k 1, ~k 2|~k
′
1,
~k
′
2〉 = δ

(
~k 1 − ~k

′
1

)
δ
(
~k 2 − ~k

′
2

)
+ δ

(
~k 1 − ~k

′
2

)
δ
(
~k 2 − ~k

′
1

)
. (II.54)

Furthermore for an arbitrary two-particle bosonic ket |F 〉, the momentum representative is,

F (~k 1, ~k 2) =
1√
2
〈~k 1, ~k 2|F 〉2 , (II.55)

from which we infer that on the two-particle space Hb
2, also

1

2

∫
|~k 1, ~k 2〉〈~k 1, ~k 2| d~k 1 d~k 2 = I . (II.56)

II.7 Operators Acting on States of Two Identical Bosons

The tensor product operator T1 ⊗ T2 acting on the symmetric tensor product state f1 ⊗s f2

gives

(T1 ⊗ T2) (f1 ⊗s f2) =
1√
2

(T1f1 ⊗ T2f2 + T1f2 ⊗ T2f1) , (II.57)

which in general is not symmetric. However two operators that always transform bosonic
(symmetric) two-particle states to other bosonic (symmetric) states are the two particle
operators T2 = T ⊗ T and S2 = S ⊗ I + I ⊗S of §II.4. In these cases it is easy to check that

T2 (f1 ⊗s f2) = Tf1 ⊗s Tf2 , (II.58)

and
S2 (f1 ⊗s f2) = (Sf1 ⊗s f2) + (f1 ⊗s Sf2) . (II.59)

In Dirac notation,

T2|f1, f2〉 = |Tf1, T f2〉 , and S2|f1, f2〉 = |Sf1, f2〉+ |f1, Sf2〉 . (II.60)

Special cases of these identities are,

F2|f1, f2〉 = |Ff1,Ff2〉 , and U(a,Λ)2|f1, f2〉 = |U(a,Λ)f1, U(a,Λ)f2〉 , (II.61)

as well as

~P2|~k 1, ~k 2〉 =
(
~k 1 + ~k 2

)
|~k 1, ~k 2〉 , and ~H0|~k 1, ~k 2〉 =

(
ω(~k 1) + ω(~k 2)

)
|~k 1, ~k 2〉 .

(II.62)
Here H0 is the energy for freely moving, relativistic particles of mass m.
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III n-Particles

Having understood two particles, it is easy to generalize the concepts to the case of an
arbitrary number of particles, denoted by n.

III.1 Wave Functions for n-Identical Bosons

One can consider n-particle states that are tensor products of n one-particle states. For
instance, we take Hn to be spanned by states f (n) that are finite linear combinations of
states of the form

f1 ⊗s · · · ⊗s fn︸ ︷︷ ︸
n factors

=
1√
n!

∑
π

fπ1 ⊗ · · · ⊗ fπn , (III.1)

where the sum extends over permutations π of 1, . . . , n. This defines a wave function for the
multiple symmetric tensor product equal to

f (n)(~x 1, . . . , ~x n) = (f1 ⊗s · · · ⊗s fn) (~x 1, . . . , ~x n) =
1√
n!

∑
π

fπ1(~x 1) · · · fπn(~x n) . (III.2)

In Dirac notation we write

f1 ⊗s · · · ⊗s fn −→ |f1, . . . , fn〉〉 , (III.3)

or in momentum space

f̃1 ⊗s · · · ⊗s f̃n −→ |f̃1, . . . , f̃n〉 . (III.4)

The scalar product of two such states is

〈
f (n), f

′ (n)
〉
Hn

=
∫
f (n)(~x 1, . . . , ~x n)∗f (n) ′(~x 1, . . . , ~x n) d~x 1 · · · d~x n

= 〈f1 ⊗s · · · ⊗s fn, f
′
1 ⊗s · · · ⊗s f

′
n〉Hn

=
1

n!

∑
π,π′

(
fπ1 ⊗ · · · ⊗ fπn , fπ′1

⊗ · · · ⊗ fπ′n

)
Hn

=
∑
π

〈
f1, f

′
π1

〉
H1

· · ·
〈
fn, f

′
πn

〉
H1

. (III.5)

In particular the state that we call an n-fold symmetric tensor power

f⊗s n = f ⊗s · · · ⊗s f︸ ︷︷ ︸
n factors

, (III.6)

has length squared 〈
f⊗s n, f⊗s n

〉
Hn

= n! 〈f, f〉nH1
. (III.7)
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III.2 Permanents, Scalar Products, and Recursion Relations

The scalar product of two n-particle boson tensor product states is related to the n × n
Gram matrix M . This is the matrix whose entries are the scalar products Mij =

〈
fi, f

′
j

〉
H1

.

Sometimes M is written in terms of the 2n single-particle wave-functions in the form

M =

(
f1, f2, . . . , fn

f ′1, f
′
2, . . . , f

′
n

)
, (III.8)

where the first row of vectors f1, f2, . . . , labels the rows of the matrix M , while the second
row of vectors f ′1, f

′
2, . . . , indexes the columns.

The expression for the scalar product (III.5)is called the permanent of M , namely

PermnM =
∑
π

M1 πi
M2 π2 · · ·Mn πn , (III.9)

or

〈〈f1, . . . , fn|f ′1, . . . , f ′n〉〉 = Permn

(
f1, f2, . . . , fn

f ′1, f
′
2, . . . , f

′
n

)
. (III.10)

The combinatorial expression is similar to the expression for the determinant of M , but
it is totally symmetric, rather than alternating under an exchange of neighboring columns or
rows. Although the permanent does not have a geometric interpretation like the determinant,
it does satisfy similar recursion relations. For an (n + 1) × (n + 1)-matrix M , one has an
n× n minor M̂ij obtained by omitting the ith row and the jth column of M ,

M̂ij =

(
f1, . . . , 6fi, . . . , fn

f ′1, . . . , 6f ′j, . . . , f ′n

)
. (III.11)

Then the permanent satisfies

Permn+1M =
n+1∑
j=1

Mij PermnM̂ij , (III.12)

which one can also write as

Permn+1

(
f1, f2, . . . , fn+1

f ′1,
′
2 , . . . , f

′
n+1

)
=

n+1∑
j=1

Perm1

(
fi

f ′j

)
Permn

(
f1, f2, . . . , 6fi . . . , fn+1

f ′1, f
′
2, . . . , 6f ′j, . . . , f ′n+1

)
. (III.13)

In Dirac notation, for any i,

〈〈f1, . . . , fn+1|f ′1, . . . , f ′n+1〉〉 =
n+1∑
j=1

〈〈fi|f ′j〉〉 〈〈f1, . . . , 6fi . . . , fn+1|f ′1, . . . , 6f ′j, . . . , f ′n+1〉〉 .

(III.14)

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



Scalar Bosons 25

Continuum Bosonic Eigenkets: We have a corresponding relation for continuum eigen-
kets. We give the expressions in momentum space, although similar formulas hold in the
configuration-space representation. In the n-particle space, take the continuum basis set
|~k 1, . . . , ~k n〉. Then

〈~k 1, . . . , ~k n|~k
′
1, . . . ,

~k
′
n〉 = Perm

n

~k 1, . . . , ~k n

~k
′
1, . . . ,

~k
′
n

 =
∑
π

δ
(
~k 1 − ~k

′
π1

)
· · · δ

(
~k n − ~k

′
πn

)
.

(III.15)
The corresponding recursion relation is (for any chosen i = 1, . . . , n+ 1),

〈~k 1, . . . , ~k n+1|~k
′
1, . . . ,

~k
′
n+1〉 =

n+1∑
j=1

〈~k i|~k
′
j〉 〈~k 1, . . . , 6~k i . . . , ~k n+1|~k

′
1, . . . , 6~k

′
j, . . . ,

~k
′
n+1〉 .

(III.16)
One also has n-particle position space eigenkets |~x 1, . . . , ~x n〉〉 , or the corresponding bras,

obtained by taking fj(~x ) = δ(~x − ~x j), for each 1 ≤ j ≤ n. One also has the momentum

space eigenkets |~k 1, . . . , ~k n〉 arising from taking the wave functions f̃j(~k ) = δ(~k − ~k j), for
each 1 ≤ j ≤ n. The position space vectors satisfy

〈〈~x 1, . . . , ~x n|~x ′1, . . . , ~x
′
n〉〉 = Perm

n

(
~x 1, . . . , ~x n

~x ′1, . . . , ~x
′
n

)
=
∑
π

n∏
j=1

δ(~x j − ~x πj
) . (III.17)

Corresponding to (I.44), the scalar product between the two sorts of states is

〈〈~x 1, . . . , ~x n|~k 1, . . . , ~k n〉 =
1

(2π)3n/2

∑
π

n∏
j=1

ei~x j ·~k πj . (III.18)

As in the one-particle case, and as in the Homework 2 for the two-particle case, one has on
Hn the completeness relation,

1

n!

∫
|~x 1, . . . , ~x n〉〉〈〈~x 1, . . . , ~x n| d~x 1 · · · d~x n =

1

n!

∫
|~k 1, . . . , ~k n〉〈~k 1, . . . , ~k n| d~k 1 · · · d~k n

= I . (III.19)

n-Particle Bases: If ej for j = 0, 1, . . . is an ortho-normal basis for H1, then the vectors
Ωn that we now define are an ortho-normal basis for Hn. Choose a sequence of non-negative
integers

n = {n0, n1, . . .} , and with |n| =
∑
j

nj = n . (III.20)

Then the set of

Ωn = ⊗∞
j=0

 1√
nj!

e
⊗s nj

j

 , (III.21)

is our basis for Hn.

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



26 Arthur Jaffe

Polarization: We can express the symmetric tensor product of n distinct one-particle
states f1 ⊗s · · · ⊗s fn as a sum of n-fold tensor powers. This is a generalization of the
polarization identity (I.4) for a bilinear, symmetric function, to an identity for an n-linear
function. We find

f1 ⊗s · · · ⊗s fn =
1

2nn!

∑
ε2j=1

ε1 · · · εn (ε1f1 + · · ·+ εnfn)⊗s n , (III.22)

from which one can derive (I.4) in case n = 2.

IV Fock Space

Fock space F is the appropriate Hilbert space for a free field theory. In the case of one
type of identical scalar boson particle, we call sometimes indicate the space as F b. Here we
consider the states in such a space, and also some operators that act on this space.

IV.1 States in Fock Space

Fock space F is the space with vectors that have the possibility to contain an arbitrary
number of particles. A state f ∈ F is given by a sequence of wave functiosn f (n), each with
n particles. Thus it has the form

f = {f (0), f (1), f (2), . . . , f (n), . . .} , where f (n) ∈ Fn , (IV.1)

The zero-particle space F0 = C is just the space of complex numbers C. The scalar product
in F is just

〈f , f ′〉F =
∞∑

n=0

〈
f (n), f ′ (n)

〉
Hn

. (IV.2)

with 〈
f (n), f ′ (n)

〉
Hn

=
∫
f (n)(~x 1, . . . , ~x n) f ′ (n)(~x 1, . . . , ~x n) d~x 1 · · · d~x n . (IV.3)

If we normalize a vector f ∈ F so that 〈f, f〉F = 1, then we can interpret
〈
fn, f (n)

〉
Hn

as

the probability pn of f containing n particles, with
∑∞

n=0 pn = 1.
In the case this is a bosonic Fock space F b, then we require

Fn = Hb
n = ⊗n

sH1 = H1 ⊗s · · · ⊗s H1︸ ︷︷ ︸
n factors

, (IV.4)

to be the nth symmetric tensor power of the one-particle space H1. Then the function
f (n)(~x 1, . . . , ~x n) is totally symmetric in the interchange of the vectors ~x j, namely

f (n)(~x 1, . . . , ~x n) = f (n)(~x π1 , . . . , ~x πn) , (IV.5)

where π is a permutation (π1, . . . , πn) of (1, . . . , n).
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IV.2 Operators Preserving Particle Number

Given an operator T on the one-particle space H1, there are two simple ways to obtain an
operator on Fock space F . In both of these simple cases the resulting operator maps Hn

into Hn for each n. One can say that such operators are diagonal in the particles number.
Our first three examples illustrate these methods. These examples also map the bosonic
n-particle states F b

n into bosonic states. We call these two methods the multiplicative or
additive “second quantization” of T .

Example 1. Multiplicative “Second Quantization” Given T a linear transformation
on H1, define its multiplicative quantization Γ(T ) : Hn 7→ Hn as:

Γ(T )�H0 = I , and Γ(T )�Hn = T ⊗ · · · ⊗ T︸ ︷︷ ︸
n times

, for n ≥ 1 . (IV.6)

Then for arbitrary vectors in Fn one has

Γ(T ) (f1 ⊗ · · · ⊗ fn) = Tf1 ⊗ · · · ⊗ Tfn , (IV.7)

and also on vectors in F b
n,

Γ(T ) (f1 ⊗s · · · ⊗s fn) = Tf1 ⊗s · · · ⊗s Tfn . (IV.8)

Some examples of operators on F obtained in this way from operators on the one-particle
space F1 = H1 are

Γ(I) = I ,

Γ(U(a,Λ)1) = U(a,Λ) ,

Γ(e−t) = e−tN , defining the number of particles operator N ,

Γ(eitω) = eitH0 defining the free Hamiltonian H0 ,

Γ(e−i~a·~P ) = e−i~a·~P defining the momentum operator ~P . (IV.9)

In particular

U(a,Λ)Ω = Ω , (IV.10)

where Ω is the Fock vacuum vector Ω = {1, 0, 0, . . . , }.

Example 2. Additive “Second Quantization” The exponential representation for
the multiplicative second quantization gives rise to the second variant of the construction,
namely additive second quantization. Given the operator S on the one-particle space H1 one
can define the operator dΓ(S) on Hn as

dΓ(S)�H0 = 0 , and dΓ(S)�Hn = S ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ S︸ ︷︷ ︸
n terms

, for n ≥ 1 .

(IV.11)
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For example,

dΓ(I) = N ,

dΓ(ω) = H0 ,

dΓ(~P ) = ~P . (IV.12)

In the last case ~P denotes the total 3-momentum on Hn. This method is appropriate for
physical quantities that are additive.

Example 3. The Relation between Examples 1 and 2 Suppose that T can be
diagonalized (this is true if T is self-adjoint or unitary) and that 0 is not in the spectrum
(e.g. an eigenvalue) of T . Then S = lnT exists, and one can write

T = eS . (IV.13)

Also
T t = etS , for t real. (IV.14)

One also says that the operator S is the infinitesimal generator of T t. In other words,

S =
d

dt
T t

∣∣∣∣∣
t=0

. (IV.15)

The values in the following table are all cases of Examples 1–2 above:

T = eS S Γ(T ) dΓ(S) Comment
I 0 I 0
e I eN N The Number Operator
e−s −s e−sN −sN
eisω isω eisH0 isH0 Free Hamiltonian

e−i~a·~P −i~a · ~P e−i~a·~P −i~a · ~P Total Momentum

IV.3 Creation and Annihilation Operators

Of course, one is also interested in operators that act on Fock space between spaces with
different numbers of particles. The simplest example of an operator that changes the particle
number is the creation operator that maps a state in Hn with exactly n particles into a state
in Hn+1. It is natural to call such a state a creation operator. One usually denotes the
creation operator that creates a particle with the wave-function f by a∗(f). Its adjoint
decreases the number of particles and is an annihilation number.

Example 4. Creation Operators It is sufficient to define the creation operator on a
basis set in Fock space, and conventionally one normalizes this operator so that acting on
the tensor product bosonic n-particle state f1⊗s f2⊗s · · ·⊗s fn defined in (III.1) it produces
a tensor product state with one additional wave function,

a∗(f) (f1 ⊗s f2 ⊗s · · · ⊗s fn) = f ⊗s f1 ⊗s f2 ⊗s · · · ⊗s fn . (IV.16)
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Thus one could also write
a∗(f) = f⊗s . (IV.17)

Translating into the Dirac notation, one finds

a∗(f)|f1, . . . , fn〉〉 = |f, f1, . . . , fn〉〉 . (IV.18)

One can express the creation operator in terms of a density a∗(~x ), and one writes

a∗(f) =
∫
a∗(~x ) f(~x ) d~x . (IV.19)

Similarly one can express the creation operator in terms of a momentum-space wave packet
f̃(~k ) and the basis |~k 〉, and one finds that

a∗(f) = ã∗(f̃) =
∫
ã∗(~k ) f̃(~k ) d~k , (IV.20)

meaning that

ã∗(~k ) =
1

(2π)3/2

∫
a∗(~x )ei~k ·~x d~x , and a∗(~x ) =

1

(2π)3/2

∫
a∗(~k )e−i~k ·~x d~k , (IV.21)

as well as the relations for the adjoints

ã(~k ) =
1

(2π)3/2

∫
a(~x )e−i~k ·~x d~x , and a(~x ) =

1

(2π)3/2

∫
a(−~k )e−i~k ·~x d~k . (IV.22)

In a fashion similar to the derivation of (I.46), one can show that the ket vectors
|f1, . . . , fn〉〉 and |f̃1, . . . , f̃n〉 just amount to expressing one vector in two different bases
sets, so

|f1, . . . , fn〉〉 = |f̃1, . . . , f̃n〉 . (IV.23)

Thus

a∗(f) |f̃1, . . . , f̃n〉 = ã∗(f̃) |f̃1, . . . , f̃n〉 = |f̃ , f̃1, . . . , f̃n〉 . (IV.24)

It is easy to derive the transformation law for the creation operators under the action of
the Poincaré group. As this group acts on the one-particle states according to the representa-
tion U(b,Λ), and on the n-particle states according to a tensor product of this representation
that we also denote by U(b,Λ). On the one hand, we have

U(b,Λ) a∗(f) |f1, . . . , fn〉〉 = U(b,Λ) |f, f1, . . . , fn〉〉
= |U(b,Λ)f, U(b,Λ)f1, . . . , U(b,Λ)fn〉〉
= a∗(U(b,Λ)f) |U(b,Λ)f1, . . . , U(b,Λ)fn〉〉 , (IV.25)

while on the other

U(b,Λ)a∗(f) |f1, . . . , fn〉〉 = U(b,Λ)a∗(f)U(b,Λ)∗ U(b,Λ) |f1, . . . , fn〉〉
= U(b,Λ) a∗(f)U(b,Λ)∗ |U(b,Λ)f1, . . . , U(b,Λ)fn〉〉 . (IV.26)

Comparing (IV.25)–(IV.26), we conclude that

U(b,Λ) a∗(f)U(b,Λ)∗ = a∗(U(b,Λ)f) . (IV.27)
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Example 5. Annihilation Operators The annihilation operator

a(f) = (a∗(f))∗ =
∫
a(~x )f(~x )d~x , (IV.28)

is defined as the adjoint of the creation operator a∗(f). Defined in this way, the annihilation
operator anti-linear in f , rather than linear. We claim that for f (n+1) ∈ F b

n+1, it is the case
that a(f)f (n+1) ∈ F b

n and(
a(f)f (n+1)

)
(~x 1, . . . , ~x n) =

√
n+ 1

∫
f(~x ) f (n+1)(~x , ~x 1, . . . , ~x n) d~x . (IV.29)

Also a(f)Ω = 0, where Ω ∈ F0 denotes the zero-particle vacuum state Ω = {1, 0, 0, . . .}.
This form for the annihilation operator is equivalent to the following action on a bosonic
tensor product wave function f1 ⊗s · · · ⊗s fn+1 = |f1, . . . , fn+1〉〉 , namely

a(f)|f1, . . . , fn+1〉〉 =
n+1∑
j=1

〈f, fj〉 |f1, . . . , 6fj, . . . , fn+1〉〉 . (IV.30)

Here 6fj denotes the omission of the one-particle wave function fj.
We compute exactly what the adjoint does on a vector by using the general definition

for the adjoint of a linear transformation T . For arbitrary vectors F,G, the adjoint satisfies

〈F, T ∗G〉 = 〈TF,G〉 . (IV.31)

It is sufficient to compute the adjoint of T = a∗(f) on H by choosing G to be of the form
f ′1 ⊗s . . .⊗s f

′
n ∈ Hn, for arbitrary f ′j ∈ H1 and for arbitrary n. Since TG ∈ Hn+1, the inner

product vanishes (IV.31) vanishes unless G ∈ Hn+1. Thus in particular,

a(f)H0 = 0 . (IV.32)

In order to calculate a(f) on Hn+1, we take G = f1⊗s . . .⊗s fn+1. Then using the definition
(III.5) of the scalar product,

〈f ′1 ⊗s · · · ⊗s f
′
n, a(f) f1 ⊗s · · · ⊗s fn+1〉Fb

n

= 〈f ′1 ⊗s · · · ⊗s f
′
n, (a∗(f))∗ f1 ⊗s · · · ⊗s fn+1〉Fb

n

= 〈a∗(f) f ′1 ⊗s · · · ⊗s f
′
n, f1 ⊗s · · · ⊗s fn+1〉Fb

n

= 〈f ⊗s f
′
1 ⊗s · · · ⊗s f

′
n, f1 ⊗s · · · ⊗s fn+1〉Fb

n
. (IV.33)

Using the recursion relation (III.14) for the inner product,

〈f ′1 ⊗s · · · ⊗s f
′
n, a(f) f1 ⊗s · · · ⊗s fn+1〉Fb

n

=
n+1∑
j=1

〈f, fj〉 〈f ′1 ⊗s · · · ⊗s f
′
n, f1 ⊗s · · · 6fj · · · ⊗s fn+1〉

=

〈
f ′1 ⊗s · · · ⊗s f

′
n,

n+1∑
j=1

〈f, fj〉 f1 ⊗s · · · 6fj · · · ⊗s fn+1

〉
. (IV.34)

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



Scalar Bosons 31

Here 6fj means that fj is omitted from the product. This is true for arbitrary f ′1, . . . , f
′
n, so

a(f) f1 ⊗s · · · ⊗s fn+1 =
n+1∑
j=1

〈f, fj〉 f1 ⊗s · · · 6fj · · · ⊗s fn+1 , (IV.35)

which is the tensor-product notation for (IV.30).

IV.4 The Canonical Commutation Relations

The canonical commutation relations (CCR) for bosonic creation and annihilation operators
can be written,

[a(f), a∗(f ′)] = 〈f, f ′〉 . (IV.36)

In terms of the densities a(~x ), this means that[
a(~x ), a∗(~x ′)

]
= δ3(~x − ~x ′) . (IV.37)

In momentum space, the corresponding relations are[
a(f̃), a∗(f̃ ′)

]
=
〈
f̃ , f̃ ′

〉
, and

[
a(~k ), a∗(~k

′
)
]

= δ3(~k − ~k
′
) . (IV.38)

Here we have omitted the tilde ˜ from the creation and annihilation operators ã(~k ), ã∗(~k ).
This shorthand is common, and we do not think it causes confusion.

Before checking these relations, let us remark that if we choose an ortho-normal basis
ei for H1, then the relations have a simple form in terms of the creation and annihilation
operators

a∗j = a∗(ej) , and their adjoints aj =
(
a∗j
)∗

. (IV.39)

Then these operators satisfy the canonical commutation relations[
ai, a

∗
j

]
= 〈ei, ej〉 = δij , (IV.40)

which are familiar commutation relations in non-relativistic quantum theory. In fact,
one can expand f in the basis ej, namely f =

∑
j 〈ej, f〉 ej yielding [a(f), a∗(f ′)] =∑

j,j′ 〈f, ej〉 〈ej, f
′〉 = 〈f, f ′〉, so (IV.36) holds as a consequence of (IV.40).

We now check that (IV.40) holds. Take the ortho-normal basis for F b composed of vectors
of the form Ωn ∈ F b

n given in (III.21). Here n is arbitrary. Using (IV.16) and (IV.35) one
calculates

aia
∗
jΩn =

√
(ni + δij)(nj + 1) Ωn′ , and a∗jaiΩn =

√
(nj + 1− δij)ni Ωn′ , (IV.41)

where in both cases
where n′` = n` + δj` − δi` . (IV.42)

Note that |n′| = |n| = n, and if also i = j, then n = n′. In either case, Ωn′ ∈ Hn.
Furthermore √

(ni + δij)(nj + 1)−
√

(nj + 1− δij)ni =

{
0 if i 6= j
1 if i = j

. (IV.43)
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Therefore [
ai, a

∗
j

]
Ωn = δijΩn′ = δijΩn . (IV.44)

As a consequence, the operator identity (IV.40) holds applied to any basis element for F ,
and hence it holds as claimed.

In order to illustrate this argument completely, we also give a second derivation of the
canonical commutation relations, in particular (IV.38). We use the momentum space defi-
nition of Fock space, which by Fourier transformation is unitarily equivalent to the configu-
ration space definition. In this case we use Dirac notation. In this case,

a∗(~k )|~k 1, . . . , ~k n〉 = |~k ,~k 1, . . . , ~k n〉 . (IV.45)

One calculates the adjoint a(~k ) by computing its action on vectors |~k 1, . . . , ~k n+1〉. This is
given uniquely by the matrix elements

〈~k
′
1, . . . ,

~k
′
n| a(~k )|~k 1, . . . , ~k n+1〉 = 〈~k ,~k

′
1, . . . ,

~k
′
n|~k 1, . . . , ~k n+1〉

=
n+1∑
j=1

δ
(
~k − ~k j

)
〈~k

′
1, . . . ,

~k
′
n+1|~k 1, . . . , 6~k j, . . . , ~k n+1〉 .

(IV.46)

To derive the last equality, we use (III.16). Therefore, we infer that the formula for the
annihilation operator is

a(~k )|~k 1, . . . , ~k n+1〉 =
n+1∑
j=1

δ
(
~k − ~k j

)
|~k 1, . . . , 6~k j, . . . , ~k n+1〉 . (IV.47)

We can now calculate the commutation relations. Both a(~k )a∗(~k
′
) and a∗(~k

′
)a(~k ) pre-

serve the total particle number N . Then using (IV.47),

a(~k )a∗(~k
′
)|~k 1, . . . , ~k n〉 = a(~k )|~k

′
, ~k 1, . . . , ~k n〉

= δ(~k − ~k
′
)|~k 1, . . . , ~k n〉+

n∑
j=1

δ(~k − ~k j)|~k
′
, ~k 1, . . . , 6~k j, . . . , ~k n〉 .

(IV.48)

On the other hand,

a∗(~k
′
)a(~k )|~k 1, . . . , ~k n〉 =

n∑
j=1

δ(~k − ~k j)a
∗(~k

′
)|~k

′
, ~k 1, . . . , 6~k j, . . . , ~k n〉

=
n∑

j=1

δ(~k − ~k j)|~k
′
, ~k 1, . . . , 6~k j, . . . , ~k n〉 .

(IV.49)

Therefore [
a(~k ), a∗(~k

′
)
]
|~k 1, . . . , ~k n〉 = δ(~k − ~k

′
)|~k 1, . . . , ~k n〉 . (IV.50)
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V The Free Quantum Field

One defines the real, time-zero quantum field ϕ(~x ), averaged with a configuration space
wave function f(~x ) as

ϕ(f) =
∫
ϕ(~x ) f(~x ) d~x =

∫
ϕ̃(~k )∗f̃(~k ) d~k

= a∗
(
(2ω)−1/2 f

)
+ a

(
(2ω)−1/2 f

)
. (V.1)

Here ω is the energy operator (I.48) on the space of one-particle wave functions, and the
factor ω−1/2 ensures that the field is Lorentz covariant. The field at time t is

ϕ(f, t) = eitH0ϕ(f)e−itH0

= a∗
(
(2ω)−1/2 eitωf

)
+ a

(
(2ω)−1/2 e−itωf

)
. (V.2)

Taking f(~x ′) = δ~x (~x ′ ) one has f̃(~k ) = 1
(2π)3/2 e

−i~k ·~x ,

ϕ(x) =
1

(2π)3/2

∫ 1√
2ω(~k )

(
ã∗(~k )eitω(~k ) + ã(−~k )e−itω(~k )

)
e−i~k ·~x d~k . (V.3)

This field is defined to be a solution to the Klein-Gordon equation(
� +m2

)
ϕ(x) = 0 . (V.4)

As a second-order differential equation, the initial value together with the initial time deriva-
tive specifies the solution at all times. The initial value is

ϕ(~x ) = ϕ(~x , 0) =
1

(2π)3

∫ (
2ω(~k )

)−1/2 (
ã∗(~k ) + ã(−~k )

)
e−i~k ·~x d~k , (V.5)

while the time derivative of ϕ(x) is

π(x) =
∂ϕ(x)

∂t
=

i

(2π)3

∫ ω(~k )

2

1/2 (
ã∗(~k )eitω(~k ) − ã(−~k )e−itω(~k )

)
e−i~k ·~x d~k , (V.6)

with initial value

π(~x ) =
∂ϕ(x)

∂t
=

i

(2π)3

∫ ω(~k )

2

1/2 (
ã∗(~k )− ã(−~k )

)
e−i~k ·~x d~k , (V.7)

When applied to a state with exactly n particles, this field creates a new particle with a
wave packet (2ω)−1/2 eitωf , and it annihilates one particle with the wave packet (2ω)−1/2 eitωf̄ .
In case that f is a real wave packet (f = f̄), the field operator is self-adjoint. Note that
with Ω = {1, 0, . . .} the zero-particle state (vacuum) in F b, then

ϕ(f, t)Ω = {0, (2ω)−1/2eitωf, . . . , } , (V.8)

is the one-particle state with wave function (2ω)−1/2f , propagated to time t by U(t) = eitω

acting on the one-particle space.
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V.1 Poincaré Covariance

The scalar field transforms under Lorentz transformations Λ and space-time translations
according to the scalar transformation law,

U(a,Λ)ϕ(x)U(a,Λ)∗ = ϕ(Λx+ a) . (V.9)

There are other standard ways of writing this: for example, if one denotes the transformed
field as ϕ′ and the transformed space-time point as x′ one could write ϕ′(x) = ϕ(x′). Also,
we often average the field ϕ(x) with a space-time wave packet g(x) and define

ϕ(g) =
∫
ϕ(x) g(x) d4x , (V.10)

where one takes g(x) to be a well-behaved function on four-dimensional Minkowski space.
Then one has

U(a,Λ)ϕ(g)U(a,Λ)∗ = ϕ(g′) , where g′(x) = g
(
Λ−1 (x− a)

)
. (V.11)

One can regard g as a family of wave-packets f (t) ∈ H1 depending on the time parameter,
so that g(~x , t) = f (t)(~x ). In any case, we obtain the simple transformation law (V.9) by
considering the action of the Poincaré group on space-time, rather than on the wave functions
that depend only on the spatial variable.

Furthermore, the Poincaré transformation U(a,Λ) leaves the zero-particle state Ω invari-
ant, U(a,Λ)Ω = Ω. Therefore we claim that the vacuum-expectation of the product of two
fields,

W2(x;x
′) = W2(x− x′) = 〈Ω, ϕ(x)ϕ(x′)Ω〉 , (V.12)

is a function of the difference vector x−x′, and unlike the propagator (I.103), it is a Lorentz
scalar! We establish this by studying

〈Ω, ϕ(x)ϕ(x′)Ω〉 = 〈U(a,Λ)Ω, U(a,Λ)ϕ(x)ϕ(x′)Ω〉
= 〈Ω, U(a,Λ)ϕ(x)U(a,Λ)∗ U(a,Λ)ϕ(x′)U(a,Λ)∗ U(a,Λ)Ω〉
= 〈Ω, ϕ(Λx+ a)ϕ(Λx′ + a)Ω〉 . (V.13)

The special case Λ = I and a = −x′ shows that 〈Ω, ϕ(x)ϕ(x′)Ω〉 = 〈Ω, ϕ(x− x′)ϕ(0)Ω〉, so
taking W2(x;x

′) is a function W2(x−x′) of the difference variable. Taking a general Λ shows
that

W2(Λx) = W2(x) , (V.14)

so furthermore W2 is a Lorentz-scalar function of the difference 4-vector variable x.
In fact, the vacuum expectation values (VEVs or Wightman functions) of arbitrary prod-

ucts of fields turn out to be a very useful tool. They are defined as

Wn(x1, . . . , xn) = 〈Ω, ϕ(x1) · · ·ϕ(xn)Ω〉 . (V.15)

These functions are Lorentz-invariant functions of n− 1 difference vectors,

Wn(Λx1 + a, . . . ,Λxn + a) = Wn(x1, . . . , xn) . (V.16)

Such invariant functions are functions of the various Minkowski scalar products ξi · ξj of the
difference variables ξi = xi − xi+1, with i, j = 1, . . . , n − 1. In the case of the free scalar
field, the odd Wightman functions vanish, W2n+1 = 0. The special case n = 2 is the function
W2(x− x′) defined in (V.12) of a single difference variable.
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V.2 Canonical Commutation Relations for the Fields

The initial data for the field are independent, in the sense that they satisfy canonical, equal-
time commutation relations at equal times. The equal-time values of the field ϕ(f, t) commute
with one-another. For any real f, f ′, such that ω1/2f is a square-integrable wave packet, it
is the case that the sharp-time field ϕ(f, t) and its time derivative π(f, t) are essentially
self-adjoint operators, and that for any two such functions f, f ′,

[ϕ(f, t), ϕ(f ′, t)] = 0 , and [π(f, t), π(f ′, t)] = 0 . (V.17)

For real f , with ω−1/2f square-integrable, such fields ϕ(f) and π(f) are self adjoint.
All the ϕ(f)’s can be simultaneously diagonalized; or all the π(f)’s can be simultaneously
diagonalized.

The field π is canonical with respect to the field ϕ. At equal times the commutation
relations are

[π(f, t), ϕ(f ′, t)] = −i
〈
f̄ , f ′

〉
H1

. (V.18)

In terms of the fields at a point, the canoncial commutation relations are

[π(~x , t), ϕ(~x ′, t)] = −iδ(~x − ~x ′) , while
[
ϕ(~x ), ϕ(~x ′)

]
= 0 =

[
π(~x ), π(~x ′)

]
. (V.19)

One says that the values of the time-field are independent.
To check these relations, write out the commutators, each of which involves four terms.

Let

ϕ(x) = eitH (A∗(~x ) + A(~x )) e−itH , where A(~x ) =
1

(2π)3/2

∫
(2ω(~k ))−1/2a(−~k )e−i~k ·~x d~k .

(V.20)
Then

[
ϕ(~x , t), ϕ(~x ′, t)

]
=

[
A∗(~x ) + A(~x ), A∗(~x ′) + A(~x ′)

]
=

[
A∗(~x ), A(~x ′)

]
+
[
A(~x ), A∗(~x ′)

]
=

1

(2π)3

∫ 1

2ω
e−i~k (~x−~x ′)d~k − 1

(2π)3

∫ 1

2ω
ei~k (~x−~x ′)d~k

= 0 , (V.21)

as the integral is rotationally invariant. One finds similarly that
[
π(~x , t), π(~x ′, t)

]
= 0.

However,

[
π(~x , t), ϕ(~x ′, t)

]
=

[
iωA∗(~x )− iωA(~x ), A∗(~x ′) + A(~x ′)

]
= −i 1

(2π)3

∫ 1

2
e−i~k (~x−~x ′)d~k − i

1

(2π)3

∫ 1

2
ei~k (~x−~x ′)d~k

= −iδ(~x − ~x ′) . (V.22)
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V.3 Consequences of Positive Energy

As a consequence of positive energy, ω ≥ m, the Wightman function Wn(x1, . . . , xn) has an
analytic continuation as a function of the difference variables ξj = xj − xj+1. It is analytic
for

ξj = αj − iβj , (V.23)

where αj is a real Minkowski vector, and where βj is a real, time-like Minkowski vector with
a strictly positive time component, such as βj = (~0, sj) with sj > 0.

In particular, if we choose the time components of each αj = 0, and the space-components
of each βj to vanish, then the scalar products ξj · ξj′ are all negative; they are i2 = −1
times the scalar product of two positive-time-like vectors. One says that such points are
“Euclidean,” and that Wn analytically continues to Euclidean points. At these Euclidean
points of purely imaginary time, one says that the analytic continuation of the Wightman
functions are Schwinger functions.

V.4 Local Commutation Relations

Define the commutation for the field ϕ(x) as the function ∆, namely

∆(x;x′) = [ϕ(x), ϕ(x′)] = −∆(x′;x) . (V.24)

A bosonic field is said to be local if ∆(x;x′) vanishes whenever x−x′ is space-like (i.e. when
x and x′ cannot communicate through sending light signals to each other). In terms of ϕ,

[ϕ(x), ϕ(x′)] = 0 , when (x− x′)2 < 0 . (V.25)

One can average these commutation relations with a space-time wave packet g(x) to give

ϕ(g) =
∫
ϕ(x) g(x) d4x . (V.26)

One can express locality in terms of the space-time averaged fields. The commutator is

[ϕ(g), ϕ(g′)] = ∆(g; g′) =
∫

∆(x− x′) g(x) g′(x′) dx dx′ . (V.27)

One says that two domains D,D′ are space-like separated, if every point in x ∈ D is space-
like separated from every point x′ ∈ D′. In case that g, g′ vanish outside domains D,D′ that
are space-like separated, then the commutator ∆(g; g′) = 0 for a local field ϕ.

We have seen that the free scalar field is local. One also requires locality for scalar fields
that are not free (i.e. fields that satisfy non-linear wave equations, possibly coupling them
to other fields).

The equal-time commutators of a scalar field vanishes if

[ϕ(x), ϕ(x′)]|x0=x′0
= 0 . (V.28)

According to the canonical commutation relations (IV.36), the equal-time commutator of
the free scalar field vanishes. We have the following criteria for locality of a scalar field ϕ,
which holds for the free scalar field.
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Proposition V.1. Any covariant scalar field whose equal-time commutators vanish is local.

Proof. We use only two facts to study :

• The field ϕ(x) is a Lorentz scalar, U(b,Λ)ϕ(x)U(b,Λ)∗ = ϕ(Λx+ b), see (V.9).

• If (x − x′)2 < 0, then there is a Lorentz transformation Λ that interchanges x, x′; see
Proposition I.2.

From Lorentz covariance one infers that for any Lorentz transformation Λ,

∆(x;x′) = U(0,Λ)∗∆(Λx; Λx′)U(0,Λ) . (V.29)

Assume that x − x′ is space-like. We know from Proposition I.2 that exists a Lorentz
transformation ΛB that brings the two points to the same time, (ΛB(x− x′))0 = 0. Denote
ΛBx by y and ΛBx

′ by y′. Then from (V.28) we infer

∆(ΛBx; ΛBx
′) = ∆(y; y′) = [ϕ(~y, y0), ϕ(~y ′, y0)] = 0 . (V.30)

From (V.29) we infer that ∆(x;x′) = U∗∆(ΛBx; ΛBx
′)U = U∗0U = 0, for (x− x′)2 < 0.

For any local field, the fields averaged in space-like separated regions can be simultane-
ously diagonalized, and measured simultaneously. If g and g′ are space-time wave packets
that vanish outside space-time domains D and D′ respectively, and if every point x ∈ D is
space-like separated from every point x′ ∈ D′, then the space-time averaged fields (V.10)
commute,

[ϕ(g), ϕ(g′)] = 0 . (V.31)

V.5 Properties of the Free-Field Two Point Wightman Function

The two-point functions are the various vacuum expectation values of the product of
two fields. The simplest two-point function is the Wightman function W2(x − x′) =
〈Ω, ϕ(x)ϕ(x′)Ω〉, which has the explicit integral representation

W2(x;x
′) = W2(x− x′) =

1

(2π)3

∫ 1

2ω(~k )
e−iω(~k )(x0−x′0)+i~k ·(~x−~x ′)d~k . (V.32)

There are two related integral representation that make the Lorentz covariance of the
two-point function explicit. The first is

W2(x− x′) =
1

(2π)3

∫
k0>0

δ(k2
M −m2) e−ik·(x−x′) d4k , (V.33)

where k · (x−x′) = k ·M (x−x′) denotes the Minkowski scalar product. That (V.33) reduces
to (V.32) can be seen from the property of the one-dimensional delta function and a real
constant a, ∫

δ(ak0) dk0 =
1

| a|
. (V.34)
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In terms of a delta function whose argument vanishes at isolated zeros k(i) of a function
F (k), ∫

δ(F (k)) dk0 =
∑

i

1

|F ′(k(i))|
. (V.35)

Here F ′(k(i)) denotes the ∂F (k)/∂k0 and
∣∣∣F ′(k(i))

∣∣∣−1
arises as the Jacobian of the change

of variable of integration from dk0 to dF (k). The summation ranges over the isolated zeros

k(i) of F (k). In the case F (k) = k2
M −m2 = k2

0 − ω(~k )2, the function F (k) has two isolated

zeros at k0 = ±ω(~k ), and at these points F ′(k(i)) = 2k0|k(i) . Thus k(i) = (±k0, ω(~k )). The
restriction of the integral (V.33) to k0 > 0 then ensures that it equals (V.32).

A second integral representation for W2 allows one to express it as a contour integral by
extending the function of the energy variable k0 to the complex k0 plane. The function

e−ik·(x−x′) 1

k2
M −m2

= e−ik·(x−x′) 1

(k0 − ω(~k ))(k0 + ω(~k ))
, (V.36)

extends to an analytic function with the exception of two simple poles at k0 = ±ω(~k ). Let

C+ denote a closed, circular contour around the pole at k0 = ω(~k ) that circles the pole in a

clockwise fashion, but does not enclose the pole at k0 = −ω(~k ). Then by Cauchy’s integral
formula, one sees that (V.32) agrees with

W2(x− x′) =
i

(2π)4

∫
d~k

∫
C+

dk0
1

k2
M −m2

e−ik·(x−x′) . (V.37)

The solution W2(x−x′) to the Klein-Gordon equation has the initial values (at x0 = x′0)
given by 〈

Ω, ϕ(~x )ϕ(~x ′)Ω
〉

= W2(~x − ~x ′, 0) = G(~x − ~x ′) , (V.38)

and 〈
Ω, π(~x )ϕ(~x ′)Ω

〉
=

(
∂W2

∂t

)
(~x − ~x ′, 0) = − i

2
δ(~x − ~x ′) . (V.39)

Analyticity: From the condition that the energy ω(~k ) is positive, we infer that the Wight-
man function W2(x − x′) has an analytic continuation to a complex half plane in the time
variable. In the Fourier representation (V.32) or (V.33) this is reflected in the fact that
k0 ≥ 0. (This is a general property that is a consequence of the assumption that the energy
H is a positive operator in quantum theory, and does not depend on the fact that the field
ϕ(x) we are considering is “free.”)

More generally the energy-momentum vector k in the Fourier transform lies in the forward
cone: it is a time-like vector with positive energy,

k2
M ≥ 0 , with k0 ≥ 0 . (V.40)

As a consequence, W2(x) has an analytic continuation into the region z = x− iξ of complex
Minkowski space, where the real part x of the four-vector z is arbitrary and the imaginary
part ξ of z is a vector in the forward cone. (This includes the previous case that ξ = (~0 , ξ0)
with ξ0 > 0.)

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



Scalar Bosons 39

V.6 Properties of the Free-Field Commutator Function

Another two point function for the free field is the commutator Green’s function. Since the
field is a linear function of creation and annihilation operators, the commutator (V.24) of
two fields is a function and not an operator, namely

∆(x− y) = 〈Ω, [ϕ(x), ϕ(x′)] Ω〉 = W2(x− x′)−W2(x
′ − x) . (V.41)

Both ∆(x) and W (x) are Lorentz-invariant solutions to the massive wave equation,(
�x +m2

)
∆(x− x′) = 0 . (V.42)

The solution ∆(x− x′) has the initial values at (x− x′)0 = 0 given by

∆(~x − ~x ′, 0) = 0 , and

(
∂∆

∂x0

)
(~x − ~x ′, 0) = −iδ(~x − ~x ′) . (V.43)

As the initial data vanish for x strictly space-like, so does the entire solution ∆(x). Thus we
have an independent argument that for the free field

[ϕ(x), ϕ(x′)] = ∆(x− x′) = 0 , for (x− x′)
2
< 0 . (V.44)

One can give an integral representation for the free-field commutator function ∆(x− x′)
analogous to (V.37), namely

∆(x− x′) =
i

(2π)4

∫
d~k

∫
C
dk0

1

k2
M −m2

e−ik·(x−x′) . (V.45)

Here C denotes a contour in the complex k0-plane that encloses both the poles at ±ω(~k ) and
circles them in a clockwise direction. The contribution from the pole at k0 = ω was analyzed
in (V.37). The corresponding contribution from a circlular contour C− that surrounds only
the second pole at k0 = −ω is

i

(2π)4

∫
d~k

∫
C−
dk0 e

−ik·(x−x′) 1

k2
M −m2

= − 1

(2π)3

∫ 1

2ω(~k )
eiω(~k )(x0−x′0)+i~k ·(~x−~x ′)d~k

= − 1

(2π)3

∫ 1

2ω(~k )
eiω(~k )(x0−x′0)−i~k ·(~x−~x ′)d~k

= −W2(x
′ − x) . (V.46)

The second to last equality follows from making the substitution of variables ~k
′

= −~k
and using ω(~k ) = ω(−~k ). The last equality follows by (V.32). Thus (V.45) is the sum
W2(x− x′)−W2(x

′ − x) and equals the commutator function ∆(x− x′).
The function ∆(x − x′) = W2(x − x′) −W2(x

′ − x) = 〈Ω, [ϕ(x), ϕ(x′)] Ω〉 satisfies the
homogeneous Klein-Gordon equation; as a consequence of (� +m2)ϕ(x) = 0, so(

� +m2
)

∆(x− x′) = 0 , (V.47)
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with the initial values (V.43) above. Such a Green’s function provides a solution F (x) to
the Klein-Gordon equation (

� +m2
)
F (x) = 0 , (V.48)

with initial values
F (~x , 0) = α(~x ) , and ∂F (~x , 0)/∂t = β(~x ) . (V.49)

Namely, one can check that

F (x) = i
∫ (

∂∆(~x − ~y , t)

∂t
α(~y) + ∆(~x − ~y , t) β(~y)

)
d~y , (V.50)

does solve this equation. Furthermore the solution is uniquely determined by the initial
conditions, so this is the only such solution.

V.7 The Time-Ordered Product

The time ordered product of two fields is defined as ϕ(x)ϕ(x′) in case x0 > x′0, and ϕ(x′)ϕ(x)
in case x′0 > x0. Thus the time in the product is defined to increase from right to left. One
often denotes time-ordering by the symbol T , so

Tϕ(x)ϕ(x′) = θ(x′0 − x0)ϕ(x′)ϕ(x) + θ(x0 − x′0)ϕ(x)ϕ(x′) . (V.51)

Note that we do not define the time-ordered product of fields for equal times.5 Note that
the time-ordered product of two fields is a symmetric function,

Tϕ(x)ϕ(x′) = Tϕ(x′)ϕ(x) . (V.53)

One does not see this symmetry so clearly when expressing the time dependence of the
time-ordered product, namely

Tϕ(x)ϕ(x′) = θ(t′ − t) eitH ϕ(~x ) e−i(t−t′)H ϕ(~x ′) e−it′H

+ θ(t− t′) eit′H ϕ(~x ′) e−i(t′−t)H ϕ(~x ) e−itH . (V.54)

The Feynman Propagator: The vacuum expectation value of the time-ordered product
of two free fields is another important function ∆F , sometimes called the Feynman propa-
gator. In particular,

∆F (x;x′) = ∆F (x′;x) = ∆F (x− x′) = 〈Ω, Tϕ(x)ϕ(x′)Ω〉
= θ(x′0 − x0)W2(x

′ − x) + θ(x0 − x′0)W2(x− x′) . (V.55)

5In fact, one cannot define the time-ordering in case x = x′, because at that point the product of fields
ϕ(x)2 is singular. In fact the vacuum expectation value W2(x− x′) of ϕ(x)ϕ(x′) has no limit as x′ → x, as
it would be

W2(0) =
1

(2π)3

∫
1

2ω(~k )
d~k =

1
(2π)2

∫ ∞

0

k2 dk

ω(k)
, (V.52)

which is quadratically divergent in the momentum. In general, for space-time dimension d > 2, this diver-
gence is of order κd−2, where κ is the magnitude of the largest momentum.

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



Scalar Bosons 41

Note that for x0 6= x′0, the first term continues analytically to the lower-half x0−x′0 plane in
the time-difference variable. The same is true for the second term. Thus the Feynman prop-
agator at unequal times continues to an analytic function in the lower-half time-difference
plane.

One can write a complex integral representation for ∆F , similar to the representations
for W2(x − x′) and ∆(x − x′). In particular, let CF denote a contour extending from −∞
to +∞ along the real k0 axis; this contour avoids the pole at k0 = −ω by making a small
semicircle around the pole in the lower half plane, and it avoids the pole at k0 = +ω by
making a small semicircle around the pole in the upper half plane. We claim that

∆F (x− x′) =
i

(2π)4

∫
d~k

∫
CF

dk0
1

k2
M −m2

e−ik·(x−x′) . (V.56)

Here
The effect of the two small excursions into the complex k0 plane near k0 = ±ω(~k ) is

unchanged if we displace the two singularities slightly off the real axis into the complex k0

plane, and then take the limit of the answers calculated with the displaced singularities.
Replacing the momentum space expression

1

k2
M −m2

, by
1

k2
M −m2 + iε

, with small ε > 0 , (V.57)

shifts the pole at k0 = +ω(~k ) to
√
ω(~k )2 − iε, which lies close to ω(~k ) but is in the lower

half k0-plane. Likewise it shifts the pole at k0 = −ω(~k ) to −
√
ω(~k )2 − iε which is nearby

and in the upper half k0-plane.
The modified integral clearly converges to the original Green’s function as ε → 0. But

after introducing ε > 0, Cauchy’s theorem says that we can shift the contour CF to integrate
in the k0-plane along the real axis, from −∞ to ∞. This does not change the value of the
integral. Therefore

∆F (x− x′) = 〈Ω, Tϕ(x)ϕ(x′)Ω〉 = lim
ε→0+

i

(2π)4

∫ 1

k2
M −m2 + iε

e−ik·(x−x′) d4k . (V.58)

The Feynman propagator satisfies the differential equation(
� +m2

)
∆F (x− x′) = −iδ4(x− x′) . (V.59)

One says that the energy-momentum-space representation of the Feynman propagator is

∆̃F (k) = lim
ε→0+

i

k2
M −m2 + iε

. (V.60)

Here the limit ε→ 0+ is only meant to be taken after evaluating the Fourier transform. Also
by convention, we assign the entire (2π)−4 to the Fourier transform of the momentum-space
propagator, rather than (2π)−2 to the propagator and (2π)−2 to the Fourier transform in four
dimensions. When we use this expression later in perturbation theory, we will reintroduce
the missing powers of 2π in an appropriate way.

“Quantum Theory for Scalar Bosons” Version compiled on 23 October, 2007 at 23:08



42 Arthur Jaffe

V.8 The Retarded Commutator

The retarded commutator of fields at x and x′ is the commutator [ϕ(x), ϕ(x′)] restricted to
the domain t > t′ where the field at x can be influenced by an event at x′. In particular,
define

Rϕ(x)ϕ(x′) = θ(t− t′) [ϕ(x), ϕ(x′)] . (V.61)

Define also the expectation of the retarded commutator as the function

∆R(x;x′) = 〈Ω, Rϕ(x)ϕ(x′)Ω〉 . (V.62)

For the free field, ∆R(x;x′) = ∆R(x− x′) = Rϕ(x)ϕ(x′).
The retarded commutator is related to the time-ordered product,

Rϕ(x)ϕ(x′) = Tϕ(x)ϕ(x′)− ϕ(x′)ϕ(x) . (V.63)

Taking the vacuum expectation value of (V.63) gives for the free-field case the relation,

∆R(x− x′) = ∆F (x− x′)−W2(x
′ − x) . (V.64)

The equation of motion (V.59) for ∆F shows that(
� +m2

)
∆R(x− x′) = −iδ4(x− x′) , and ∆R(x− x′) = 0 , for t < t′ . (V.65)

In other words
GR(x− x′) = i∆R(x− x′) , (V.66)

is the ordinary retarded Green’s function for the Klein-Gordon equation.
The relation (V.64) gives a complex integral representation for ∆R. The contour CF ∪ C−

in the k0-plane can be deformed into the contour CR along the real axis from −∞ to ∞ and
avoiding both poles at ±ω with small semi-circles in the upper-half plane. Thus

∆R(x− x′) =
i

(2π)4

∫
d~k

∫
CR

dk0
1

k2
M −m2

e−ik·(x−x′) . (V.67)

One can also write

∆R(x− x′) = lim
ε→0+

i

(2π)4

∫ 1

(k0 + iε)2 − ~k
2
−m2

e−ik·(x−x′) d4k . (V.68)

In the second representation, both poles are displaced slightly into the lower-half k0-plane.
We can verify that this representation ensures the retarded property for ∆R. In fact if
t < t′, then the exponential e−ik0(t−t′) decays in the upper-half k0-plane, which encloses
no singularity. Closing the k0 contour in the upper-half plane at infinity then shows that
∆R(t− t′) vanishes.

Likewise

∆A(x− x′) = lim
ε→0+

i

(2π)4

∫ 1

(k0 − iε)2 − ~k
2
−m2

e−ik·(x−x′) d4k , (V.69)

is the advanced commutator function with(
� +m2

)
∆A(x− x′) = −iδ(x− x′) , and ∆A(x− x′) = 0 , for t > t′ . (V.70)

Also the commutator is related to the advanced and retarded functions through

∆(x− x′) = ∆R(x− x′)−∆A(x− x′) . (V.71)
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V.9 The Minkowski-Euclidean Correspondence

In §V.5 we saw that the Wightman function W2(x−x′) analytically continues into the lower-
half complex plane in the time-difference variable, namely to a negative imaginary part for
t− t′. The time-ordered function ∆F (x;x′) also analytically continues for t 6= t′ and defines
a symmetric function of complex x, x′. These indications suggest that the time coordinate
of the field itself can be analytically continued to be purely imaginary.

As the time dependence of the field is ϕ(~x , t) = eitHϕ(~x )e−itH , from positivity of the
energy we infer that eitH is continues analytically to a bounded function in the upper-half
complex t-plane. Furthermore take any state vector in Fock space of the form g = e−THf ,
with f ∈ F b and t < T . Then the transformation e+tH can be applied to such a vector g,
and ϕ(x)g = ϕ(~x , t)g has an analytic continuation to imaginary time.6

Under this change to purely imaginary time, a real space-time vector xM = (~x , t) in
Minkowski space continues to the complex space-time vector zM = (~x, it) with the property
that the Minkowski square x2

M = t2 − ~x 2 continues to the negative of the Euclidean square,

x2 = t2 + ~x 2 . (V.72)

We now consider the transformation xM → x, from a real point in Minkowski space to
the corresponding real point in Euclidean 4-space. Under this transformation, the Lorentz
transformations Λ on Minkowski space map to rotations of Euclidean 4-space, Λ → R.

The invariance of the Minkowski square x2
M under Lorentz transformations in space-

time continues to the invariance of the Euclidean square x2 under rotations in 4-space.
Correspondingly the invariance of the Minkowski square k2

M of the energy-momentum vector
under Lorentz transformations continues to invariance of the Euclidean square k2 under
rotations in a real energy-momentum 4-space with Euclidean geometry.

Let us denote complex 4-vectors in Minkowski space by z = x+ iy and z′ = x′+ iy′. The
analytic continuation for W2 or ∆F in question take place in the region where the difference
4-vector variable z− z′ = (x−x′)+ i(y− y′) has the property that the imaginary part y− y′
is time-like and (y − y′)0 < 0. Included in this set of points of analyticity are those z, z′

for which the spatial components ~z, ~z′ are real, and the time components iy0, iy
′
0 are purely

imaginary with negative time differences, namely y′0 > y0. These imaginary-time points are
called Euclidean points as z2 < 0 and z′ 2 < 0.

Imaginary Time Fields: We are especially interested in the analytic continuation of the
Minkowski space field to purely imaginary time. Define the imaginary-time field

ϕI(x) = ϕ(~x , it) = e−tHϕ(~x )etH . (V.73)

Note that the imaginary-time fields are not hermitian. In terms of matrix elements,

ϕI(~x , t)
∗ = ϕI(~x ,−t) , (V.74)

meaning that 〈g, ϕI(~x , t)
∗ g′〉F = 〈ϕI(~x ,−t)g,g′〉F , for g = e−THf , g′ = e−THf ′ of the form

6For any ε > 0, the expression e−εHϕ(~x , t)g is a vector in F that analytically continues to the strip in
the upper-half t-plane with the imaginary part of t bounded by =(t) < T .
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It is natural to ask when the product of two imaginary time fields ϕ(x)ϕ(x′) has an
analytic continuation to a product ϕI(x)ϕI(x

′) at purely imaginary times it, it′. Writing out
the product, one sees that

ϕ(x)ϕ(x′) = eitH ϕ(~x ) ei(t′−t)H ϕ(~x ′)et′H . (V.75)

One can repeat the argument for the single field above and analytically continue this product
to an analytic function

ϕI(x)ϕI(x
′) (V.76)

in the time-ordered imaginary-time region 0 < t < t′ < T .
Therefore it is natural to also define a time-order for imaginary time fields. But in this

case, it is natural to take the time-order to increase from left to right, as in our example
(V.76). In order to distinguish this from we real-time ordering, we use the notation “+” to
designate the imaginary-time-ordered product,

(ϕI(x)ϕI(x
′))+ = θ(t′ − t)ϕI(x)ϕI(x

′) + θ(t− t′)ϕI(x
′)ϕI(x) . (V.77)

The vacuum expectation value of the imaginary-time-ordered-product of two fields is called
the two-point Schwinger function S2,

S2(x− x′) =
〈
Ω, (ϕI(x)ϕI(x

′))+ Ω
〉
. (V.78)

This Schwinger function is Euclidean invariant, it is symmetric under the interchange of
x, x′, and in fact it equals

S2(x, x
′) = S2(x− x′)

=
〈
Ω, ϕ(~x ′)e−|t−t′|Hϕ(~x )Ω

〉
=

1

(2π)3

∫ 1

2ω(~k )
e−ω(~k )|t−t′|+i~k ·(~x−~x ′)d~k . (V.79)

As S2 is rotationally invariant, we can evaluate S2(x − x′) in a frame where ~x − ~x ′ = 0.
Then the representation (V.79) shows that

S2(x− x′) > 0 . (V.80)

This positivity is a fundamental property that we later see also holds for interacting fields,
and also for n-point Schwinger functions!

One can give make the Euclidean-invariance of the Schwinger function manifest, by using
a representation with this property. This representation is closely tied to the 4-dimensional
integral representations of the various real-time Green’s functions studied above. With k · x
the Euclidean scalar product in 4-space

∑3
i=0 kixi, one can also write the free-two-point

Schwinger function as

S2(x− x′) =
1

(2π)4

∫ 1

k2 +m2
eik·(x−x′)d4k . (V.81)
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In fact the free Schwinger function S2(x − x′) is a Green’s function for the Helmnolz
operator (

−∇2
x +m2

)
=
(
−∆ +m2

)
, (V.82)

where ∆ = ∆x is the 4-dimensional Laplacian7

∆x = ∇2
x =

4∑
i=0

∂2

∂x2
i

. (V.83)

By differentiating (V.79) we see that S2 satisfies the (elliptic) Helmholz equation for a Green’s
function, (

−∆x +m2
)
S2(x− x′) = δ4(x− x′) . (V.84)

Time-Ordered Products and Schwinger Functions: One can generalize this to con-
sider the “Euclidean” analytic continuations of the time-ordered product of n time-ordered
fields to n time-ordered imaginary-time fields. (By considering the time-ordered product, we
are certain to obtain a symmetric function of the Euclidean vectors x1, . . . , xn.) Consider
n Minkowski-space points xj = (~x j, tj) at unequal times, and let π be the permutation of
1, . . . , n such that tπ1 > · · · > tπn . Define the time-ordered product

Tϕ(x1) · · ·ϕ(xn) = ϕ(xπ1) · · ·ϕ(xπn) , where in real time tπ1 > · · · > tπn . (V.85)

These time ordered products, just as in the case n = 2 considered above, analytically continue
to purely imaginary time for unequal times. The analytic continuation is the (imaginary)-
time-ordered product that generalizes (V.77),

(ϕI(x1)ϕI(x2) · · ·ϕI(xn))+ = ϕI(xπ1)ϕI(xπ2) · · ·ϕI(xπn)

= e−tπ1Hϕ(~x π1)e
−(tπ2−tπ1 )Hϕ(~x π2) · · ·ϕ(~x πn)etπnH .

(V.86)

Unlike the imaginary parts of the real time differences that are negative, the individual
imaginary times t1, . . . , tn are all taken to be positive. Here π is not the permutation that
enters (V.85); rather in imaginary time π is chosen as the permutation that ensures

0 < tπ1 < · · · < tπn . (V.87)

Therefore in the imaginary-time-ordered product, it is natural for the times to increase from
left to right, which is the reverse of the situation in the real-time-ordered product.

The vacuum expectation values of the time-ordered products generalize ∆F , so we define

∆F, n(x1, . . . , xn) = 〈Ω, Tϕ(x1) · · ·ϕ(xn)Ω〉 . (V.88)

These expectations analytically also continue to purely imaginary time, giving the n-point
Schwinger functions defined as

Sn(x1, . . . , xn) =
〈
Ω, (ϕI(x1) · · ·ϕI(xn))+ Ω

〉
= Sn(xπ1 , . . . , xπn) , (V.89)

totally symmetric under permutation of the Euclidean space-time points x1, . . . , xn.

7It is standard notation to use the symbol ∆ both to denote the commutator function (V.24) or the
Feynman propagator ∆F , as well as the Laplacian ∆x in (V.83). Hopefully this will not cause confusion.
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