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Abstract: We establish reflection positivity for Gibbs trace states for a class
of gauge-invariant, reflection-invariant Hamiltonians describing parafermion in-
teractions on a lattice. We relate these results to recent work in the condensed-
matter physics literature.

I. Introduction

In the early 1960’s, Keijiro Yamazaki introduced a family of algebras generalizing
a Clifford algebra.1 These algebras are characterized by a primitive nth root of
unity ω = e2πi/n, and generators cj , where j = 1, 2, . . . , L, with each generator
of order n. Alun Morris studied these algebras and showed that for even L
when considered over the complex field they have an irreducible representation
on a Hilbert space H of dimension N = nL/2, and this is unique up to unitary
equivalence [33]. Here we consider L even and cj unitary. In the physics literature,
one calls the operators cj a set of parafermion generators of order n (or simply
“parafermions”) if they satisfy Yamazaki’s relations:

cnj = I , and cjcj′ = ω cj′cj , for j < j′ . (I.1)

Consequently c∗j = cn−1j , and also cjcj′ = ω−1 cj′cj for j > j′. The choice
n = 2 reduces to a self-adjoint representation of a Clifford algebra; it describes
Majoranas, namely fermionic coordinates. For n > 3 one obtains a generic al-
gebra of parafermionic coordinates, whose generators are not self-adjoint. Note
that if {cj} are a set of L parafermion generators of order n, then {c∗j} is another
set of L parafermion generators of order n.

Parafermion commutation relations appeared in both the mathematics and
the physics literature, long before the definitions of the algebras cited above.

1 See 1) and 2) in the middle of page 193 in §7.5 of [43].
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J. J. Sylvester introduced matrices satisfying parafermion commutation relations
in 1882, see [39,40]. In 1953, Herbert S. Green proposed such commutators for
fields [20]. More recent examples occur in [22,16].

The relations (I.1) arise from studying representations of the braid group;
a new discussion appears in [12]. Generally, representations of the braid group
lead to a variety of statistics and have been the focus of intense research over
the last decades, see for example [19].

Paul Fendley [14,15] gave a parafermion representation for Rodney Baxter’s
clock Hamiltonian and for some related spin chains [4,5,6], and discovered ma-
trices similar to those in [39]; see our remarks in §VIII. Some further examples
occur in [7,1]. Recently there has been a great deal of interest in the possibil-
ity to obtain parafermion states in one and two-dimensional model systems, see
[2,10,30,42,3,32,27,28]. Two sets of authors have proposed a classification of
topological and non-topological phases in parafermionic chains [34,9].

I.1. Reflection Positivity (RP). Konrad Osterwalder and Robert Schrader dis-
covered RP for bosons and fermion fields [37], after which RP became the stan-
dard way to relate statistical physics to quantum theory, especially quantum
field theory, justifying inverse Wick rotation. In condensed-matter physics RP
leads to a self-adjoint transfer matrix acting on a Hilbert space. Variations of
this property have been central in hundreds of subsequent papers on quantum
theory and also on condensed-matter physics, especially in the study of ground
states and phase transitions [18,13,8]. So RP is fundamental, and it is important
to know when it holds.

Let A ∈ A− belong to an algebra of observables localized on one side of a
reflection plane; let ϑ(A) denote the reflected observable localized on the other
side of the plane. The reflection ϑ is said to have the RP-property on A− with
respect to the expectation 〈 · 〉, if always 〈Aϑ(A)〉 > 0.

In this paper we show that RP applies in lattice statistical mechanical systems
generated by parafermions. The expectation that we study here is a trace defined
with the Boltzmann weight e−H for a class of Hamiltonians specified in §VI. Our
Hamiltonians are not necessarily hermitian. However in case the Hamiltonian
is reflection symmetric, then the partition function is automatically real and
positive,

Z = Tr(e−H) > 0 . (I.2)

We give our main result in Theorem 6 of §VI, where we show that the corre-
sponding expectations of the form

〈 · 〉 = Tr( · e−H) (I.3)

are RP with respect to an algebra of observables An− generated by monomials
in parafermions of degree n. This paper generalizes our earlier results on the
algebra of fermionic coordinates [25].

I.2. Non-Hermitian Hamiltonians. We remark that non-hermitian Hamiltonians
describe the dynamics of physical systems which are not conservative. They
may arise in different systems, such as those with a singular potential, or when
considering conditional expectations. Although such models appear throughout
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statistical physics, there has been a proliferation of recent papers that focus on
non-hermitian Hamiltonians.

Interesting examples with non-hermitian Hamiltonians occur both in statis-
tical physics; see for example [4,15], as well as in different areas of science. We
mention the study of flux lines in superconducting materials [21], and the analy-
sis of population density in biological processes [36]. Trefethen and Embree have
a book on some general properties of non-normal operators, that arise from
non-hermitian Hamiltonians [41].

In the complimentary direction of Euclidean quantum field theory, the action
S plays the role of the Hamiltonian multiplied by time or inverse temperature.
In this context, expectation values defined with a reflection-positive Boltzmann
weight e−S are the analytic continuation of physical expectation values in a
quantum theory with a self-adjoint Hamiltonian. A non-hermitian action S oc-
curs not only for action functions involving fermion fields, see [38], but it can
also arise for purely bosonic interactions that are not time-reflection invariant,
see [23,24].

II. Basic Properties of Monomials in Parafermions

Parafermions cj yield ordered monomials with exponents taken mod n,

CI = cn1
1 cn2

2 · · · c
nL
L , where 0 6 nj 6 n− 1 . (II.1)

Define the sequence of exponents, I = {n1, . . . , nL}, and denote the total degree
as

|I| =
L∑
j=1

nj . (II.2)

II.1. Algebras of Parafermions. The parafermion monomials CI generate an al-
gebra that we denote A. Divide the L parafermions ci into two subsets, according
to whether or not i 6 1

2L. Define A− as the algebra generated by monomials

CI, for which nj = 0 for all j > 1
2L. We use the short-hand notation I ⊂ Λ− to

mean that the sequence I determines a monomial CI ∈ A−.
Correspondingly let A+ denote the algebra generated by monomials CI, for

which nj = 0 for all j 6 1
2L, etc. In addition, define the “order k”-parafermion

subalgebras Ak± ⊂ A± as follows:

Ak± is the algebra generated by CI ∈ A± , with |I| = k . (II.3)

One can add the sets indexing parafermions by setting

I + I′ = {n1 + n′1, . . . , nL + n′L} . (II.4)

Clearly there is no loss in generality to require that one takes each sum nj + n′j
mod n. Define the numbers

I ◦ I′ =
∑

16j<j′6L

njn
′
j′ , and I ∧ I′ = I ◦ I′ − I′ ◦ I . (II.5)
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With these definitions

CICI′ = ω−I◦I
′
CI+I′ = ω−I∧I

′
CI′CI . (II.6)

Denote the complement of I by

Ic = {n− n1, . . . , n− nL} . (II.7)

One has
C∗I = ω−I◦I CIc , and C∗I CI = I = CI C

∗
I . (II.8)

II.2. Reflection. Define the reflection ϑ as the map

i 7→ ϑi = L− i+ 1 . (II.9)

Represent ϑ as an anti-linear ∗-automorphism of A, whose action on elements
we denote ϑ(A). Thus

ϑ(ci) = c∗ϑi = cn−1ϑi , and ϑ (cjck) = ϑ (cj)ϑ (ck) . (II.10)

Set ϑI = {nL, . . . , n1}, and note that (ϑI)
c

= ϑ(Ic) = ϑIc. Using (II.5), one
sees that

ϑ(CI) = ω−I◦I CϑIc . (II.11)

Take Λ− = {1, 2, . . . , L/2} and Λ+ = {L/2 + 1, . . . , L} to divide the points
Λ = Λ−∪Λ+ into two sets Λ± exchanged by reflection. To simplify notation, we
relabel the sites in order to put sites 1 to L/2 on one side of the reflection plane
and sites L/2+1 to L on the other side. Throughout the rest of this paper we use
the property that parafermions ci− with i− ∈ Λ− and ci+ with i+ ∈ Λ+ satisfy
ci−ci+ = ω ci+ci− , which follows from our assumption i− < i+. For I ⊂ Λ+ and
I′ ⊂ Λ−, one has I ◦ I′ = 0. So in this case

I ∧ I′ = −I′ ◦ I = −
∑
j,j′

njn
′
j′ = − |I | |I′| . (II.12)

II.3. Gauge Transformations. We introduce the family of local gauge automor-
phisms Uj defined by

cj 7→ Uj′(cj) = ωδjj′ cj , for j = 1, . . . , L . (II.13)

Here δjj′ is the Kronecker delta function. As shown in [12], this transformation
can be implemented on the Hilbert space of parafermions by the unitary trans-
formation Vj = e−2πiNj/n, where Nj is a parafermionic number operator, and
Uj′(cj) = Vj′cjV

∗
j′ . The different Vj commute.

Global gauge transformations are defined by U =
∏L
j=1 Uj and transform

all parafermions by the same phase ω. Special significance is attached to the
parafermion monomials that are invariant under global gauge transformations.
In fact we say that the globally-gauge-invariant parafermion monomials are ob-
servables. We call the gauge-invariant algebra An the algebra of observables.
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III. Reflection Symmetry and Gauge Invariance

Here we show that certain multiples of the monomials (II.1) are both reflection-
symmetric and gauge invariant. These monomials may not be hermitian. We also
discuss the general form of reflection-symmetric, gauge-invariant, polynomial
Hamiltonians.

Lemma 1 (Elementary Rearrangement) For I± ⊂ Λ±,

CI+
CI− = ω−|I+||I−| CI− CI+

. (III.1)

Also for I, I′ ⊂ Λ−,

ϑ(CI)CI′ = ω|I | |I
′| CI′ ϑ(CI) . (III.2)

Proof. For I± ⊂ Λ±, one has I+ ◦ I− = 0. Hence

I+ ∧ I− = −I− ◦ I+ = − |I−| |I+| . (III.3)

Therefore (II.6) can be written in this case as (III.1). Also ϑIc ∈ Λ+, so (II.11)
and (III.3) ensures

ϑ(CI)CI′ = ω−ϑI
c◦I′ CI′ ϑ(CI) . (III.4)

But |ϑIc| = nL− |I|, so (III.2) holds. �

Proposition 2 Let CI ∈ A− have the form (II.1), and let

XI = ω
1
2 |I|

2

CI ϑ(CI) , where ω = e
2πi
n . (III.5)

Then XI is both reflection invariant and globally gauge invariant. More generally
for XI = eiθ CI ϑ(CI), the reflection-invariant combination XI+ϑ(XI) is a real
multiple of (III.5).

Proof. One has

ϑ(XI) = ϑ(ω
1
2 |I|

2

CI ϑ(CI)) = ω−
1
2 |I|

2

ϑ(CI)CI . (III.6)

Substitute the elementary rearrangement of Lemma 1 with I = I′ into (III.6).
This entails ϑ(XI) = XI as claimed.

Furthermore XI is a globally-gauge-invariant monomial, for

UCIU
∗ = ω|I| CI , while Uϑ(CI)U∗ = ω−|I| ϑ(CI) . (III.7)

As U is linear, we infer UXIU
∗ = XI.

The second assertion also follows, by noting that the multiple in question is

2 cos
(
θ − 1

2 |I|
2
)

. �

Corollary 3 Reflection-invariant, globally-gauge-invariant polynomials that are
linear combinations of monomials (III.5) can be written as∑

I⊂Λ−
|I|>0

(−1)1+|I| ω
1
2 |I|

2

JIϑI CI ϑ(CI) , with real couplings JIϑI . (III.8)
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III.1. Hermitian Hamiltonians. A general monomial entering the sum (III.8) is
not hermitian, namely

YI = (−1)1+|I| ω
1
2 |I|

2

JIϑI CIc ϑ(CIc) , (III.9)

for

Y ∗I = (−1)1+|I| ω
1
2 |I|

2

JIϑI CIc ϑ(CIc) . (III.10)

In this equality we use (II.8) and (III.1), so the monomial YI is hermitian only
if Ic = I. This entails ni = 1

2n, for every i. A necessary condition for YI to be
hermitian is that n is even.

For example if n = 2 and L = 2 one can label the two sites by 1,2, with
I = {1} and ϑI = {2}. Then |I| = 1 and ω = −1. The specific monomial

YI = iJIϑI c1ϑ(c1) (III.11)

of the form (III.9) is both reflection-symmetric and hermitian. On the other
hand, a general YI of the form (III.9), which may not be hermitian, always
yields the polynomial YI +Y ∗I , that is both reflection symmetric and hermitian.

For example, with n = 3 and L = 2, ω = e
2πi
3 , the monomial

YI = ω
1
2 JIϑI c1ϑ(c1) = ω

1
2 JIϑI c1c

∗
2 = ω

1
2 JIϑI c1c

2
2 , (III.12)

yields the reflection-symmetric, hermitian polynomial

YI + Y ∗I = ω
1
2 JIϑI (c1c

2
2 + c21c2) . (III.13)

IV. A Basis for Parafermions

Let CI = cn1
1 · · · c

nL
L be one of nL monomials of the form (II.1), with L even. As

a consequence of the results of Morris [33], one can take CI to act on a Hilbert
space H of dim(H) = nL/2.

Proposition 4 The monomials CI are linearly independent, and provide a basis
for the nL linear transformations on H. Furthermore Tr (CI) = 0, unless |I| = 0.
Any linear transformation A on H has the decomposition

A =
∑
I

aI CI , where aI =
1

nL/2
Tr (C∗IA) . (IV.1)

Proof. If CI = I, then Tr (CI) = dimH = nL/2. So we need only analyze |I| > 0.
We consider two cases.
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Case I: A particular cj does not occur in CI. Distinguish between two subcases,
according to whether or not

∑
i<j ni−

∑
i>j ni = 0 mod n. If this quantity does

not vanish, then cyclicity of the trace and the parafermion relations (I.1) ensure
that

Tr (CI) = Tr
(
CIc

n
j

)
= Tr

(
cjCIc

n−1
j

)
= ω

∑
i<j ni−

∑
i>j ni Tr (CI) .

The last equality is a consequence of (I.1), allowing one to move cj to the right

through CI. As ω
∑
i<j ni−

∑
i>j ni 6= 1, we infer that Tr(CI) = 0.

On the other hand, when
∑
i<j ni −

∑
i>j ni = 0 mod n, there exists j′ 6= j

with nj′ 6= 0 mod n, and also |j − j′| is minimized. If j′ < j, then

Tr (CI) = Tr
(
CIc

n
j′
)

= Tr
(
cj′CIc

n−1
j′

)
= ω−nj′+(

∑
i<j ni−

∑
i>j ni) Tr (CI)

= ω−nj′ Tr (CI) = 0 .

In the last equality we use that ωnj′ 6= 1. If j′ > j the same reasoning can be
followed, except ωnj′ replaces ω−nj′ .

Case II: Every cj occurs in CI.. Here we have

nj ∈ {1, 2, . . . , n− 1} , (IV.2)

for each j. Move one of the cj ’s cyclically through the trace, and back to its
original position. For j = 1, this shows that

Tr (CI) = ω
∑L
j=2 nj Tr (CI) . (IV.3)

Hence either Tr (CI) = 0, or else

L∑
j=2

nj = 0 mod n . (IV.4)

Likewise for 2 6 j 6 L, either Tr(CI) = 0, or

−
k−1∑
j=1

nj +

L∑
j=k+1

nj = 0 mod n , for k = 2, . . . , L− 1 , (IV.5)

and for k = L,
L−1∑
j=1

nj = 0 mod n . (IV.6)

The conditions (IV.4) and (IV.5) for the case k = 2, show that n1 + n2 = 0
mod n. Condition (IV.2) ensures that both n1 and n2 are strictly greater than
0 and strictly less than n, so n1 + n2 = n.

Next subtract the condition (IV.5) for k = 3 from the same condition for
k = 2. This shows that n2 + n3 = 0 mod n, and the restriction (IV.2) ensures
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that n2 + n3 = n. Continue in this fashion for k = j + 1 and k = j, in order
to infer that nj + nj+1 = n for j = 3, . . . , L − 2. Finally consider the condition
(IV.6). As we have seen that nj + nj+1 = n for j = 1, 3, 5, . . . , L − 3, we infer
that nL−1 = 0 mod n. But this is incompatible with 1 < nL−1 < n required by
(IV.2). So we conclude that Tr(CI) = 0 in all cases for which I 6= 0.

Note that C∗ICI = I for each I. Assuming that I 6= I′, it follows from the
form (II.1) for CI, that C∗I′CI = ±Cγ for some γ 6= 0. Suppose that there
are coefficients aI ∈ C such that

∑
I aICI = 0. Then for any I′, one has

C∗I′
∑

I aICI =
∑

I aIC
∗
I′CI = 0. Taking the trace shows that aI′ = 0, so

the CI are actually linearly independent. As there are nL linearly independent
matrices CI, namely the square of the dimension of the representation space
nL/2 of parafermions, these monomials are a basis set for all matrices. Expand-
ing an arbitrary matrix A in this basis, we calculate the coefficients in (IV.1)
using Tr I = nL/2. �

V. Primitive Reflection-Positivity

Proposition 5 Consider an operator A ∈ A±, then

Tr(Aϑ(A)) > 0 . (V.1)

Proof. The operator A ∈ A± can be expanded as a polynomial in the basis CI

of Proposition 4. One can restrict to I ∈ Λ±, so the monomials that appear in
the expansion all belong to A±. Write

A =
∑
I

aI CI , and ϑ(A) =
∑
I

aI ϑ(CI) . (V.2)

With A ∈ A−, one can take CI = cn1
1 · · · c

nL/2
L/2 , so

Tr (Aϑ(A)) =
∑
I,I′

aI aI′ Tr (CI ϑ(CI′)) . (V.3)

Since CI ∈ A− and ϑ(CI′) ∈ A+, they are products of different parafermions.
We infer from Proposition 4 that the trace vanishes unless |I| = |ϑI′| = 0. Then

Tr (Aϑ(A)) = nL/2 |a0|2 > 0 , (V.4)

as claimed. �

VI. The Main Results

Fix the order n of parafermions, and consider positive-temperature states deter-
mined by a Hamiltonian H that is reflection invariant ϑ(H) = H, and globally
gauge invariant UHU∗ = H. But H is not necessarily hermitian.

Assume that H has the form

H = H− +H0 +H+ , (VI.1)

with H± ∈ An± and H+ = ϑ(H−). Here H0 is a sum of interactions (III.8) across
the reflection plane, namely

H0 =
∑

I⊂Λ−
|I|>0

(−1)|I|+1ω
1
2 |I|

2

JIϑI CI ϑ(CI) . (VI.2)
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VI.1. Assumptions on the coupling constants. For any n, our results hold if the
coupling constants in (VI.2) satisfy

JIϑI > 0 , for all I . (VI.3)

Alternatively, for even n, our results hold if the coupling constants satisfy

(−1)|I|JIϑI > 0 , for all I . (VI.4)

Note that we only restrict the signs of the coupling constants for those inter-
actions that cross the reflection plane.2 The functional

Tr(Aϑ(B) e−H) , for A,B ∈ An± , (VI.5)

which is linear in A and anti-linear in B.

VI.2. Reflection Positivity on the Algebra of Observables. Here we show that a
reflection-symmetric, globally-gauge-invariant Hamiltonian H has the reflection-
positivity property on the algebra An± of gauge-invariant observables.

Theorem 6 Let A ∈ An± and H of the form (VI.1)–(VI.4). Then the functional
(VI.5) is positive on the diagonal,

Tr(Aϑ(A) e−H) = Tr(ϑ(A)Ae−H) > 0 . (VI.6)

In particular, the partition function Tr(e−H) > 0 is real and non-negative.

Proof. Use the Lie product formula for matrices α1, α2, and α3 in the form

eα1+α2+α3 = lim
k→∞

(
(1 + α1/k)eα2/keα3/k

)k
, (VI.7)

with α1 = −H0, α2 = −H−, and α3 = −H+. (Such an approximation was also
used in equation (2.6) of [17].) Using (VI.7), one has e−H = limk→∞

(
e−H

)
k
,

where(
e−H

)
k

=

(I − 1

k

∑
I⊂Λ−
|I|>0

(−1)1+|I|ω
1
2 |I|

2

JIϑI CI ϑ(CI)) e−H−/k e−ϑ(H−)/k


k

=

(I +
1

k

∑
I⊂Λ−
|I|>0

(−1)|I|ω
1
2 |I|

2

JIϑI CI ϑ(CI)) e−H−/k e−ϑ(H−)/k


k

.

(VI.8)

2 The conditions (VI.3)–(VI.4), taken together with our definition (VI.2) for the phase of
the couplings, reduce to the conditions in our earlier work on Majoranas [25], for which n = 2

and ω = −1. The phase in (VI.2) is i2|I|+2+|I|2 = −1, i, corresponding to |I| being even or

odd, respectively. In [25] the corresponding phases were i(|I| mod 2) = 1, i. Thus the couplings
JIϑI in the present paper have the opposite sign from those in [25] for even |I|; they have
the same sign for odd |I|. Bearing this in mind, the allowed interactions in the two papers
agree for n = 2. For the case of general n, our new choice of signs simplifies the formulation of
conditions (VI.3)–(VI.4).
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One can include the term I in the sums in (VI.8) by defining J∅ϑ∅ = k, and
including |I| = 0 in the sum. Then

(
e−H

)
k

=
1

kk

 ∑
I⊂Λ−

(−1)|I|ω
1
2 |I|

2

JIϑI CI ϑ(CI) e−H−/k e−ϑ(H−)/k

k

=
∑

I(1),...,I(k)⊂Λ−

(−1)
∑k
j=1 |I

(j)|ω
∑k
j=1

1
2 |I

(j)|2

×cI(1),...,I(k) YI(1),...,I(k) . (VI.9)

In the second equality we have expanded the expression into a linear combination
of terms with coefficients

cI(1),...,I(k) =
1

kk

k∏
j=1

JI(j) ϑI(j) , (VI.10)

and with

YI(1),...,I(k) = CI(1)ϑ(CI(1)) e−H−/k e−ϑ(H−)/k · · ·
× · · ·CI(k)ϑ(CI(k)) e−H−/k e−ϑ(H−)/k . (VI.11)

We assume in (VI.1) that H− ∈ An−. Thus YI(1),...,I(k) has the form in (VI.13)

with Bj = e−H−/k for all j. Let

DI(1),...,I(k) = CI(1) e−H−/k CI(2) e−H−/k · · ·CI(k) e−H−/k ∈ A− . (VI.12)

Lemma 7 (General Rearrangement) Let CI(j) ∈ A−, and let A,Bj ∈ An−,
for j = 1, . . . , k. Also let DI(1),...,I(k) = CI(1)B1 CI(2)B2 · · ·CI(k)Bk ∈ A−. Then

Aϑ(A)CI(1)ϑ(CI(1))B1ϑ(B1)CI(2)ϑ(CI(2))B2ϑ(B2) · · ·CI(k)ϑ(CI(k))Bkϑ(Bk)

= ω
∑

16j<j′6k |I
(j)| |I(j′)| ADI1,...,Ik ϑ(ADI1,...,Ik) . (VI.13)

Proof. In order to establish (VI.13), rearrange the order of the factors on the
left side of the identity. In doing this, one retains the relative order of A, of the
various CI(j) , and of the various Bj′ that are elements of A−. Likewise one retains
the relative order of ϑ(A), of the various ϑ(CI(j)) and of the various ϑ(Bj′) that
are elements of A+. In this manner one obtains ADI(1),...,I(k)ϑ(ADI(1),...,I(k))
multiplied by some phase.

The resulting rearrangement only requires that one commutes operators in
A+ with operators in A−. As ϑ(A) ∈ An+ and ϑ(Bj′) ∈ An+, each such factor
commutes with every operator in A−, and in particular with each CI(j) . Likewise
Bj′ ∈ An− commutes with each operator ϑ(CI(j)). Thus one acquires a phase not
equal to 1, only by moving one of the operators ϑ(CI(j)) ∈ A+ to the right, past
one of the operators CI(j′) ∈ A−. And this is only required in case j < j′. Use
the rearrangement identity (III.1) to perform this exchange. This phase is given
by the resulting product of phases arising in the elementary moves, and it yields
the phase in (VI.13). �
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Lemma 8 (Conservation Law) Under the hypotheses of Lemma 7, the trace
of ADI1,...,Ik ϑ(ADI1,...,Ik) vanishes unless

k∑
j=1

|I(j)| = 0 mod n . (VI.14)

If (VI.14) holds, then the constants cI(1),...,I(k) defined in (VI.10) satisfy

0 6 cI(1),...,I(k) . (VI.15)

Proof. Expand T = ADI1,...,Ik and its reflection as a sum of monomials (IV.1),

T =
∑

Ĩ⊂Λ−

aĨCĨ , and ϑ(T ) =
∑

Ĩ′⊂Λ−

aĨ′ ϑ(CĨ′) . (VI.16)

Here we distinguish Ĩ = {ñ1, . . . , ñL/2, 0, . . . , 0} from I(j) in the definition of
CI(j) . Proposition 4 ensures that the trace of CĨ ϑ(CĨ′) vanishes unless each
ñi = 0 = ñ′i. The trace of Tϑ(T ) is given by the constant term in the expansion
in the monomial basis of parafermions.

Consider first the case in which A and all the Bj are constants. Then the
relation (II.6) ensures that

T = CI(1) · · ·CI(k) = αCI(1)+···+I(k) = αCĨ , with α ∈ C , (VI.17)

namely there is only one term CĨ in the expansion of T . Thus we have the local
conservation law

ñi =

k∑
j=1

n
(j)
i mod n , (VI.18)

for each i = 1, . . . , L, and in fact ñi = 0 for i > L/2.
Proposition 4 ensures that the trace of Tϑ(T ) vanishes unless each parafermion

ci appears in CĨ with an exponent equal to 0 mod n. In other words ñi = 0.
Summing this relation over i gives the desired global conservation law (VI.14).

In the general case, the matrices A and Bj are elements of An−. One obtains
T from the previous case by replacing each CI(j) by the product CI(j) Bj , and
multiplying DI1,...,Ik by A. One can expand A and each Bj using the basis
of parafermion monomials, and the total degree of each non-zero term in each
of these expansions is an integer multiple of n. In the general case, the multi-
plications may introduce new parafermion factors, so it may be the case that

ñi 6=
∑k
j=1 n

(j)
i mod n, and the local conservation law (VI.18) may not hold for

T . However the relation (II.6) ensures that each multiplication by A or by Bj
changes the total degree of any monomial in the expansion of T by an integer
multiple of n. Thus

L∑
i=1

ñi =

L∑
i=1

k∑
j=1

n
(j)
i mod n =

k∑
j=1

|I(j)| mod n , (VI.19)

remains true. Since the trace of Tϑ(T ) vanishes unless ñi = 0 for all i, we infer
the global conservation law (VI.14). Hence (VI.14) holds in the general case.
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The positivity of cI(1),...,I(k) follows in case each of the coupling constants
JI(j) ϑI(j) are non-negative. In case of even n, we also allow a factor

(−1)
∑k
j=1|I(j)| = (−1)αn (VI.20)

for integer α. But as we are assuming that n is even, this also equals +1. �

Completion of the Proof of Theorem 6. Using (VI.9) and Lemma 7, we infer that

Aϑ(A)
(
e−H

)
k

=
∑

I(1),...,I(k)

(−1)
∑k
j=1 |I

(j)| ω
∑k
j=1

1
2 |I

(j)|2+
∑

16j<j′6k |I
(j)| |I(j′)|

× cI(1),...,I(k)ADI(1),...,I(k)ϑ(ADI(1),...,I(k))

=
∑

I(1),...,I(k)

(−1)
∑k
j=1 |I

(j)| ω
∑k
j=1

1
2 |I

(j)|2+ 1
2 (
∑k
j=1 |I

(j)|)
2− 1

2

∑k
j=1 |I

(j)|2

× cI(1),...,I(k)ADI(1),...,I(k) ϑ(ADI(1),...,I(k))

=
∑

I(1),...,I(k)

(−1)
∑k
j=1 |I

(j)| ω
1
2 (
∑k
j=1 |I

(j)|)
2

× cI(1),...,I(k)ADI(1),...,I(k) ϑ(ADI(1),...,I(k)) .

Taking the trace, we have the approximation

Tr
(
Aϑ(A)

(
e−H

)
k

)
=

∑
I(1),...,I(k)

(−1)
∑k
j=1 |I

(j)| ω
1
2 (
∑k
j=1 |I

(j)|)
2

cI(1),...,I(k)

×Tr
(
ADI(1),...,I(k) ϑ(ADI(1),...,I(k))

)
. (VI.21)

From Lemma 8 we infer that the trace vanishes unless
∑k
j=1 |I(j)| = αn for some

non-negative integer α. Also in this case cI(1),...,I(k) > 0. The phase in (VI.21) is

(−1)
∑k
j=1 |I

(j)|ω
1
2 (
∑k
j=1 |I

(j)|)
2

= (−1)αnω
1
2α

2n2

= e2πin
(1+α)α

2 = 1 .

In the final equality we use the fact that (1 +α)α is even. Proposition 5 ensures
Tr(ADI(1),...,I(k)ϑ(ADI(1),...,I(k)) > 0. So each term in the sum (VI.21) is non-
negative. Therefore the k →∞ limit of (VI.21) is also non-negative. �

In §IX, we require a generalization of Lemma 7 and Lemma 8, which reduce
to the previous statements in case A = B and B−j = F−j for all j. The proof of
the generalizations follow the prior proofs step by step.

Lemma 9 (General Rearrangement II) Let CI(j) ∈ A−, and let A, B, B−j ,

F−j ∈ An−, for j = 1, . . . , k. Also let D−
I(1),...,I(k) = CI(1)B−1 CI(2)B−2 · · ·CI(k)B−k ∈

A− , and correspondingly let E−
I(1),...,I(k) = CI(1)F−1 CI2F

−
2 · · ·CI(k)F−k ∈ A−.

Then,

Aϑ(B)CI(1)ϑ(CI(1))B−1 ϑ(F−1 ) · · ·CI(k)ϑ(CI(k))B−k ϑ(F−k )

= ω
∑

16j<j′6k |I
(j)| |I(j′)| AD−I1,...,Ik

ϑ(BE−I1,...,Ik
) . (VI.22)
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Lemma 10 (Conservation Law II) Under the hypotheses of Lemma 9, the
trace of AD−I1,...,Ik

ϑ(BE−I1,...,Ik
) vanishes unless

k∑
j=1

|I(j)| = 0 mod n . (VI.23)

If (VI.23) holds, then

cI1,...,Ik =
1

kk

k∏
j=1

JI(j) ϑI(j) > 0 . (VI.24)

VII. RP Does Not Hold on A−

We have proved that the functional f(A) = Tr(Aϑ(A) e−H) is positive for A ∈
An− ⊂ A−. This is what we defined as the algebra of observables after (II.3).
Here we remark that f(A) is not positive on the full algebra A−.

Consider L = 2 with the parafermion generators, c = c1 ∈ A1
− and c2 =

ϑ(c)∗ ∈ A1
+. Let A = c and take H = H0 = ω

1
2 cϑ(c), which has the form (VI.1)–

(VI.2), with H− = H+ = 0. We now show that f(c) is not positive, so ϑ is not
RP on A1

−. In fact

f(c) =

∞∑
k=0

Tr(cϑ(c)(cϑ(c))k)
(−1)kω

k
2

k!

=

∞∑
k=0

ω(k+ k(k−1)
2 ) Tr

(
c1+kϑ(c)1+k

) (−1)kω
k
2

k!

=

∞∑
k=0

ω

(
k+ k2

2

)
(−1)k

k!
Tr
(
c1+kϑ(c)1+k

)
.

Use the fact that the trace vanishes unless 1 + k = `n for ` = 1, 2, . . .. Then

f(c) = Tr(I)

∞∑
`=1

ω

(
(`n−1)+ (`n−1)2

2

)
(−1)`n−1

(`n− 1)!

= −ω− 1
2 Tr(I)

∞∑
`=1

ω
1
2 `

2n2

(−1)`n

(`n− 1)!
. (VII.1)

For integer `, the product `(` + 1) is an even, positive integer. Thus the phase
inside the sum equals

ω
1
2 `

2n2

(−1)`n = e(
2πi
n )( 1

2 `
2n2)+πi`n = eπin`(`+1) = 1 . (VII.2)

Therefore one finds that

f(c) = −ω− 1
2 Tr(I)

∞∑
`=1

1

(`n− 1)!
6∈ R+ . (VII.3)
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One can also calculate f(cj) for the same Hamiltonian, noting that cj ∈ Aj−.

In this case there are certain pairs (n, j), with j < n, for which f(cj) is positive.
Three such families of pairs are:

1. n = k3, j = k2, with k ∈ Z+,
2. n = 2k2, j = 2kj′, with 1 6 j′ < k,
3. n = k2, j = j′k with k odd and 1 6 j′ < k.

We do not pursue the question of finding on exactly which subalgebras of A−
the functional f(cj) is positive.

VIII. The Baxter Clock Hamiltonian

As an example of a familiar parafermion interaction, Fendley has shown that
the Baxter clock Hamiltonian (originally formulated as interacting spins [4,5])
can be expressed in terms of parafermions. Near the end of §3.1 of [15], he finds
that for parafermion generators cj of degree n,

H = ω
n−1
2

L−1∑
j=1

tj cj+1c
∗
j , (VIII.1)

where the tj are real coupling constants. As c∗j = cn−1j , each term in the Hamil-
tonian is an element of the algebra An.

In §I we remarked that if {cj} are parafermion generators, then {c∗j} are also
parafermion generators. So using this alternative set of parafermions, one can
also write the Baxter clock Hamiltonian as

H = ω
n−1
2

L−1∑
j=1

tj c
∗
j+1cj = −ω 1

2

L−1∑
j=1

tj cj c
∗
j+1 . (VIII.2)

One can split this sum into three parts,

H = H− +H0 +H+ , (VIII.3)

where

H− = −ω 1
2

1
2L−1∑
j=1

tj cjc
∗
j+1 , H+ = −ω 1

2

L−1∑
j= 1

2L+1

tj cjc
∗
j+1 ,

and
H0 = −ω 1

2 t 1
2L

c 1
2L
c∗1

2L+1 = −ω 1
2 t 1

2L
c 1

2L
ϑ(c 1

2L
) . (VIII.4)

Note that ϑ(H0) = H0. Also

ϑ(H−) = −ω− 1
2

1
2L−1∑
j=1

tj ϑ(cj)ϑ(c∗j+1) = −ω− 1
2

1
2L−1∑
j=1

tj c
∗
L−j+1cL−j

= −ω− 1
2−(n−1)

1
2L−1∑
j=1

tj cL−jc
∗
L−j+1 = −ω 1

2

L−1∑
j= 1

2L+1

tL−j cjc
∗
j+1 .
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On the other hand, the parafermion Hamiltonians that we study in (VI.1)
include those with |I| = 1 of the form

H = H− +H0 +H+ , with H+ = ϑ(H−) , (VIII.5)

and

H0 = ω
1
2 J 1

2L
c 1

2L
ϑ(c 1

2L
) = ω

1
2 J 1

2L
c 1

2L
c∗1

2L+1 . (VIII.6)

Thus Fendley’s representation of the Baxter Hamiltonian has the required
general form (VIII.5)–(VIII.6) if Jj = −tj for all j, and also

tL−j = tj , for j = 1, 2, . . . ,
1

2
L− 1 . (VIII.7)

Such a Hamiltonian is reflection invariant, ϑ(H) = H, and it is gauge invariant
UHU∗ = H. It satisfies our RP hypotheses in §VI.1 in case:

For odd n: t 1
2L
6 0 .

For even n: t 1
2L
∈ R . (VIII.8)

IX. Reflection Bounds

Reflection positivity allows one to define a pre-inner product on A± given by

〈A,B〉 = Tr(Aϑ(B)) . (IX.1)

This pre-inner product satisfies the Schwarz inequality

|〈A,B〉|2 6 〈A,A〉 〈B,B〉 . (IX.2)

In the standard way, one obtains an inner product 〈Â, B̂〉 and norm ‖Â‖ by

defining the inner product on equivalence classes Â = {A + n} of A’s, modulo
elements n of the null space of the functional (IX.1) on the diagonal. In order to
simplify notation, we ignore this distinction.

Let us introduce two pre-inner products 〈 · , · 〉± on the algebras An±, corre-
sponding to two reflection-symmetric Hamiltonians. Let

〈A,B〉− = Tr(Aϑ(B) e−H−,ϑ−), for H−,ϑ− = H− +H0 + ϑ(H−) . (IX.3)

Similarly define

〈A,B〉+ = Tr(Aϑ(B) e−Hϑ+,+) , for Hϑ+,+ = ϑ(H+) +H0 +H+ . (IX.4)

As in the first paragraph of this section, use the forms (IX.3) and (IX.4) to define
inner products and norms ‖ · ‖±.

We now state the reflection bound for a Hamiltonian H for which we do not
assume that H− = ϑ (H+). Rather we bound the absolute value of expectations
defined by H, in terms of the norms ‖ · ‖±.
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Proposition 11 (RP-Bounds) Let H = H− + H0 + H+ with H± ∈ An± and
H0 of the form (VI.2), with couplings JIϑI that satisfy (VI.3) or (VI.4). Then
for A,B ∈ An+, ∣∣Tr(Aϑ(B) e−H)

∣∣ 6 ‖A‖− ‖B‖+ . (IX.5)

Also ∣∣Tr(Aϑ(B) e−H)
∣∣ 6 ‖A‖+ ‖B‖− . (IX.6)

In particular for A = B = I,∣∣Tr(e−H)
∣∣ 6 Tr(e−(H−+H0+ϑ(H−)))1/2 Tr(e−(ϑ(H+)+H0+H+))1/2 . (IX.7)

Proof. The proof is an elaboration of the proof of Theorem 6, that yields an
upper bound rather than positivity. Use the expression (VI.21), along with the
discussion following that identity, to write Aϑ(B)

(
e−H

)
k
, which converges to

Aϑ(B) e−H as k →∞ in the form

Tr
(
Aϑ(B)

(
e−H

)
k

)
=

∑
I(1),...,I(k)

cI(1),...,I(k)

〈
AD−

I(1),...,I(k) , BE
−
I(1),...,I(k)

〉
. (IX.8)

The form 〈 · , · 〉 in (IX.8) is defined in (IX.1). The matrices D−I1,...,Ik
∈ A− are

given by (VI.12), and

E−I1,...,Ik
= CI1e

−ϑ(H+)/kCI2e
−ϑ(H+)/k · · ·CIke

−ϑ(H+)/k ∈ A− . (IX.9)

We infer from Lemma 8 that cI1,...,Ik > 0 whenever 〈AD−I1,...,Ik
, BE−I1,...,Ik

〉 6= 0.

Use the Schwarz inequality for 〈 · , · 〉 and the positivity of cI1,...,Ik to obtain∣∣Tr
(
Aϑ(B)

(
e−H

)
k

)∣∣ 6 ∑
I(1),...,I(k)

c
1/2
I1,...,Ik

〈AD−I1,...,Ik
, AD−`1,...,`k〉

1/2

× c
1/2
I1,...,Ik

〈BE−I1,...,Ik
, BE−I1,...,Ik

〉1/2

6

 ∑
I(1),...,I(k)

cI(1),...,I(k)〈AD−
I(1),...,I(k) , AD

−
I(1),...,I(k)〉

1/2

×

 ∑
I(1),...,I(k)

cI(1),...,I(k) 〈BE−
I(1),...,I(k) , BE

−
I(1),...,I(k)〉

1/2

.

Taking the limit k →∞, one has∣∣Tr
(
Aϑ(B) e−H

)∣∣ = 〈A,A〉1/2− 〈B,B〉1/2+ = ‖A‖− ‖B‖+ . (IX.10)

This completes the proof of relation (IX.5).

When A,B ∈ An+, substitute in the left-hand side of (IX.6) A = ϑ(Ã) and

B = ϑ(B̃) with Ã, B̃ ∈ An−. Since A and B commute with ϑ(A) and ϑ(B),∣∣Tr(Aϑ(B) e−H)
∣∣ =

∣∣∣Tr(B̃ ϑ(Ã) e−H)
∣∣∣ . (IX.11)

Replacing H− by ϑ(H+) and ϑ(H−) by H+ in the bound (IX.5) completes the
proof of (IX.6). �
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Reflection-positivity bounds of the form (IX.5) and (IX.6) turned out to be
useful to solve numerous physics problems. As an illustration, we mention here
four relevant examples. In [13], the authors applied RP bounds to study phase
transitions in anisotropic spin lattice models. RP bounds were also useful to
investigate the vortex structure in the ground states of interacting fermions on
a lattice [29,31] and of certain spin ladders [11].

X. Topological Order and Reflection Positivity

Define a loop C of length 2` as an ordered sequence of sites {i1, i2, . . . , i2`}. Let
WA = Aϑ(A) = B(C) be a product of parafermions around the loop C,

B(C) = c
ni1
i1
c
ni2
i2
· · · cni2`i2`

, where i1 6 i2 6 · · · 6 i2` = i1 . (X.1)

Take A = c
ni1
i1
· · · cni`i` to be the product of parafermions along half of a loop

and ϑ(A) = ϑ(ci1) · · ·ϑ(ci`) = (c
ni1
ϑi1

)∗ · · · (cni`ϑi` )
∗ = c

n−ni1
i2`

· · · cn−ni`i`+1
the product

of parafermions along the other half of the loop.
Consider a reflection-invariant Hamiltonian H, with a ground-state subspace

P. We also use the symbol P to denote the orthogonal projection onto the
ground-state subspace. Define H to have W -order, if the operator W applied
to any vector Ω ∈ P has no component in P that is orthogonal to Ω. In other
words, PWP is a scalar multiple of P, and W does not cause transitions between
different ground states. Topological order involves the additional assumption
that W is localized.

In an earlier paper [26], we have the following result for a Hamiltonian de-
scribing the interaction of Majoranas. The exact same proof as in [26] applies as
well to Hamiltonians describing the interaction of parafermions.

Proposition 12 Let H be a reflection-positive Hamiltonian that has WA =
Aϑ(A) topological order, where A ∈ An−. Then 0 6 〈Ω,WAΩ〉 for any Ω ∈ P.

Topologically ordered systems have attracted a lot of attention in the physics
community because of their potential use in quantum computation. The idea is
to encode the qubit states into the ground-state subspace of such Hamiltonians.
Topological order ensures that the encoded qubits are able to tolerate some
local noise without being destroyed. In order to change the state of the qubit
one must perform a non-local operation. This is the basic premise for topological
quantum computation. In this context it is important to understand the ground-
state properties of Hamiltonians with topological order.

Related to this line of thinking, we considered the interaction of Majoranas
(parafermions of degree two) on a two-dimensional lattice [26]. In this case
the operators WA were conserved and we said that a loop C has a vortex if
B(C) = WA = −1. We applied Proposition 12 to show that WA has no vortex
in any ground state. One could investigate a similar situation for parafermion
interactions.
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