Reflection Positivity Then and Now
ARTHUR JAFFE

DEDICATED TO THE MEMORY OF ROBERT SCHRADER

Konrad Osterwalder and Robert Schrader discovered reflection positivity (RP)
in the summer of 1972 at Harvard University.! At the time they were both my
postdoctoral fellows, and together we formed the core of a group at Harvard who
studied quantum field theory from a mathematical point of view.

RP has since blossomed into an active research area; this conference in Ober-
wolfach marks the 45" anniversary of its discovery. When Palle Jorgensen, Karl-
Hermann Neeb, Gestur Olafsson, and I first envisioned this meeting in 2014, we
had hoped that both Robert and Konrad would be here. Unfortunately neither is:
Robert died in November 2015, and Konrad had to cancel because of a conflict.
So I have been called upon to make some remarks to set the stage.

These comments not only relate to the early discovery of RP, but they also
illustrate that RP is still an active and interesting area of research. The original
discovery of RP arose from an effort to relate two different mathematical subjects
in a specific way: what property is needed to start from a classical probability
theory of fields (i.e. a statistical mechanics of random fields), and end up with
a quantum theory of fields? Of course one wanted to have a framework that
would apply to the putative quantum fields that physicists believe describe the
interactions of elementary particles.

The original work focused into finding a set of axioms for Euclidean-covariant
Green’s functions, that are equivalent to the Wightman axioms for the vacuum
expectation values of relativistic quantum fields [42, 43]. The Euclidean Green’s
functions are objects in classical probability theory, while vacuum expectation
values describe the quantum mechanics of fields.

One can regard the relation between the analytically continued expectations
(in time) to probability theory, as generalizing the “Feynman-Kac formula.” This
formula gives a Wiener integral representation that provides solutions to the heat-
diffusion equation, namely the analytic continuation of the Schrodinger equation.
One side of the equation is purely classical; the other side is an analytic continu-
ation (justified by the positivity of the energy) of quantum theory.

An immediate application of RP was to provide a framework for the first exis-
tence proof for examples of non-linear quantum field theories with scattering [12].
These are quantum, non-linear, scalar wave equations with energy density AP (¢)s.
Here AP is a polynomial bounded from below, and the subscript 2 denotes two-
dimensional space time. Theorem: For 0 < A sufficiently small, these models
exist and satisfy all the Wightman axioms for a quantum field theory. The models
actually satisfy as well the more-detailed Haag-Ruelle axioms for scattering, which

IThis is based on the opening talk on November 20, 2017 at the conference “Reflection
Positivity,” held at the Mathematical Research Institute, Oberwolfach, Germany.
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include the existence of an lower and upper mass gap, leading to an isolated eigen-
value m in the mass spectrum. In addition they yield local algebras that satisfy
the Haag-Kastler axioms. For these reasons the discovery of RP marked a turning
point in the study of relativistic quantum physics.

Amazingly, the RP property not only arises in quantum physics. But RP con-
nects to areas of research in fields ranging from operator algebras, mathematical
analysis, probability, and representation theory on one hand, to statistical physics
and the study of phase transitions on the other. RP has enabled the proofs of nu-
merous interesting and deep results in far-flung areas of mathematics and physics.
Similar positivity conditions appear in other subjects, so one might dream that
new areas of relevance for reflection positivity will appear in the future, in other
mathematical areas.

Since RP is now an enormous field, I apologize in advance for my sparse list of
references; these are only meant to be personal and impressionistic, and they cover
a small selection of papers from an enormous universe of possibilities. However, 1
am confident that the other speakers during this week will fill the gap by citing
many other important papers.

1. THE BACKGROUND STORY

The analytic continuation of the expectations of fields to imaginary time was
proved in the general framework of Wightman in 1956 [53]. This result is a con-
sequence of the assumption that the spectrum of the energy H is non-negative,
and that the time-translation automorphism arises from the unitary group e
acting on the Hilbert space H of quantum theory. Furthermore one assumes that
the Poincaré group acting on H has an invariant vector (a vacuum).

This analytic continuation is the non-perturbative parallel to “Wick rotation”
of time introduced in the physics literature to make sense of the terms in the
perturbation expansion of a Lorentz-invariant theory [51]. Jost studied properties
of analytically continued Wightman functions to Schwinger functions, including
their symmetry at imaginary time, as detailed in his 1957 book [30]. Schwinger
emphasized the notion of Euclidean quantum field theory in his well-known 1958
paper [46]. According to Miller [37], Schwinger claimed to have discovered these
results about Euclidean fields seven years before he published them.

In any case, the advent of Euclidean expectation values and Euclidean fields set
the stage for the pioneering work of Kurt Symanzik, who proposed in 1964 that
the Euclidean field could be formulated as the classical Markov field. Symanzik
described these ideas in preliminary form in his widely-circulated Courant Institute
Report [47] and in the paper [48]. He also presented a monumental course in his
1968 Varenna summer school lectures [49].

The Varenna lectures mark the end of Symanzik’s research on Euclidian quan-
tum field theory, which he explains in his introductory lecture. There he estimates
the efficacy of the different approaches known at the time for constructing an ex-
ample of an interacting field. Unfortunately Symanzik under-estimated the value
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of his own approach. In fact when it was understood some five years later, it
turned out to play an important role.

Symanzik’s approach cried out for building a mathematical foundation by which
to understand it. His vision appeared to be a promising blueprint for finding a non-
trivial field theory. Symanzik made a valiant attempt to implement his program
for the p? theory in two space-time dimensions, by working on this problem with
S.R.S. Varadhan. But the gap between their results (described in the appendix
to [49]), and the much more extensive results necessary to establish the existence
of an interacting Euclidean field theory—even in two dimensions—remained im-
possible to bridge at the time.

Furthermore, even if one could solve that problem of constructing the probabil-
ity distribution for a Euclidean classical field, there remained another fundamental
question: how can one relate a classical Euclidean field to a relativistic quantum
field? In other words, as there is no Hamiltonian for the Euclidean classical field,
how can one justify analytically continuing back from Euclidean time to real time?
Namely, how can one justify an inverse Wick rotation? In the rest of this work I
will call this question the reconstruction problem; similarly I call a solution to this
problem a reconstruction theorem.

How to prove a reconstruction theorem baffled mathematical physicists during
my student days, and it became the center of much discussion. But there were
no viable suggestions of how to resolve it. The same question also baffled par-
ticle physicists, including Schwinger? who regarded it as important. This latter
statement is documented in Schwinger’s response to a question asked by Pauli
about understanding spin and statistics in the Fuclidean framework; it followed
Schwinger’s talk at a 1958 CERN conference. “The question of to what extent
you can go backwards, remains unanswered, i.e. if one begins with an arbitrary
Euclidean theory and one asks: when do you get a sensible Lorentz theory? This
I do not know. The development has been in one direction only; the possibility of
future progress comes from the examination of the reverse direction, and that is
completely open.”

The first big step in the reconstruction from Euclidean to real-time was achieved
in 1972 by Edward Nelson. He had been fascinated by Symanzik’s Markov field
approach, and formulated that framework in mathematical terms. Nelson discov-
ered a reconstruction theorem that starts from a Markov field and yields a scalar
bosonic quantum field [38]. He then showed that the free (Gaussian) Euclidean
field satisfies the hypotheses of that construction [39].

2In those days, discussions after lectures at important conferences were recorded or tran-
scribed; then they were published along with the lectures in the conference proceedings. In
perspective, the discussions are often of greater interest than the talks. I was grateful to learn
in [37] about the reference [45], where one can read this fascinating exchange. The book that I
quote can be found online by following the hyperlink to CERN, and the quoted passage appears
at the end of page 140.



2. THE DISCOVERY OF REFLECTION POSITIVITY

This was the situation in the summer of 1972 when I began to read the preprint
of Nelson’s reconstruction paper. This led to several discussions with Konrad
Osterwalder on the topic. Not only did I wish to understand Nelson’s construction,
but I hoped that one could discover a more robust reconstruction method that also
applied to fermions. In the Euclidean world fermions are Grassmann, rather than
abelian, so they did not appear to fit into a Markov setting.

Furthermore, the Markov property that Nelson assumed was a strong one, and it
had not been proved for the examples of two-dimensional interacting fields known
at the time, although Nelson could verify it in the case of the free field. Konrad
was looking for an interesting project to work on, and I thought a new way to do
reconstruction could be very fruitful. I was deeply engrossed at the time in trying
to understand aspects of the three-dimensional ¢* theory.

Meanwhile Robert Schrader was on vacation, visiting his friend (later wife) in
Germany. Since one could not park a car on the street for more than one night
near the Cambridge address where Robert lived, I had suggested that he leave his
car in Northampton, Massachusetts. This is a small college town where my wife
worked, and I knew that there were no overnight-parking laws like in Cambridge.
Just after Robert returned, I planned to drive to Northampton, and from near
there to fly to Chicago for a conference. So I took Robert with me to pick up
his car, and for nearly two hours we discussed the reconstruction project while I
drove.

I explained to Robert what Konrad and I had been thinking about, and I
encouraged Robert to think more about the question. But Robert immediately
resisted. He too had seen Nelson’s paper and thought that Nelson’s construction
was very natural, leaving little new to be discovered. As the trip progressed, I was
getting more and more upset—and afterward I recalled worrying about paying too
little attention to the road. For not only did I feel that the question was extremely
interesting, but I really hoped that Robert and Konrad could make some progress
on the problem while I was in Chicago. Finally I seemed to break through, only
shortly before we arrived at Robert’s car.

About one week later, when I returned to Cambridge, Massachusetts, I found
Konrad and Robert enthusiastic, proud, and delighted. They thought that they
knew the key to a new reconstruction method: they had discovered the reflection
positivity property! A reflection-invariant functional w on an algebra 2 =24 ®2,
is reflection positive on 201 5 A with respect to the antilinear reflection homomor-
phism © mapping A, — A_, if 0 < w(O(A)A). And in their example, the RP
form provided the inner product space a Hilbert space H for quantum theory.
Their original celebrated publication [42] appeared a few months later. This is the
statement for bosons; more generally one uses a twisted product ©(A) o A that
reduces to ©(A)A for bosons, see [42, 18, 20].

The RP form actually provides the quantization of the classical system. If w
is invariant under a time-translation *-automorphism o; for t € R, and a; acts
on A, for t > 0, then the quantization of «; yields a positive Hamiltonian H on
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‘H. The importance of RP in quantum physics stems from the fact that the inner
product and the Hilbert space for almost every quantum mechanics or relativistic
field theory arises from the quantization of some classical system that has the
reflection-positivity property. Often one calls this property “Osterwalder-Schrader
positivity.”

It was discovered that the original Osterwalder-Schrader paper contained an
error involving continuity for a tensor product of distributions. Although some
persons claimed that the gap was serious, I was sure that the problem was minor;
that is what turned out to be the case. They corrected their method in a second
paper [43], where they also gave a stronger version of their reconstruction theorem—
showing the equivalence of their assumptions to a modified version of Wightman’s
theory.

It is also meaningful that Edward Nelson explained in his 1973 Erice Lec-
tures [40], how his Markov field fits into the Osterwalder-Schrader (OS) frame-
work, even though at that point the correction to the OS method had not yet
been found [41]. But by that time, Nelson had come to regard the OS reconstruc-
tion as the natural way to pass from Euclidean theory to quantum theory.

3. THE PROLIFERATION OF RESULTS RELATED TO REFLECTION POSITIVITY

Since the appearance of RP in quantum field theory, it has permeated many
other fields. Here we only give an impressionistic view. Robert Schrader left his
position as postdoctoral fellow at Harvard in 1973 to go to Germany. His successor
as postdoctoral fellow was Jiirg Frohlich, who became one of the first persons to
investigate RP in great detail. Right in the beginning he made an interesting study
of the generating functionals and the reconstruction theorem via RP-functional
integrals, both the zero-temperature and also finite-temperature fields [6]. I refer
the reader to the notes of his presentation at this meeting for several of the many
other perspectives that Jiirg pursued [7].

It also turns out that RP has close ties with preceding work: including with
Widder’s investigation of the Laplace transform in the 1930’s [52], as was discov-
ered by Klein and Landau [32]. Furthermore, the reflection © in RP is related in
various ways to the reflection J in the Tomita-Takesaki theory of operator alge-
bras [50], as well as to other reflections in its predecessors. Some references on
these latter connections can be found in the introduction to [19] and of course the
talks of Frohlich [7] and of Longo [36].

3.1. Phase Transitions and Symmetry Breaking. Physicists believed for
many years in symmetry breaking and vacuum degeneracy for certain quantum
field theories. The idea of the proof goes back to Peierls’ analysis of phase transi-
tions in the Ising model in 1936, but it was completed mathematically by Griffiths
and by Dobrushin some thirty years later.

One expects that a A\2(p? — 1/A?)? field theory with a “W-shaped” potential
will also have a phase transition for the real parameter A sufficently small. In
this case the field will behave much like an Ising system at low temperature: the
average of the field will be approximately localized near the two minima of the
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potential at ¢ = £\ that are separated by a large potential barrier of height A =2
at ¢ = 0. This became a much-sought-after result, which was announced without
proof in 1973 by Dobrushin and Minlos in a widely-cited paper [3].

Another early application of RP that one might not have anticipated, was the
important use of the Schwarz inequality arising from RP to establish global es-
timates of local perturbations—by reflecting the perturbation multiple times. In
particular this was an important component in the first mathematical proof of the
existence of symmetry breaking and vacuum degeneracy in quantum field theory.
One used multiple-reflection RP bounds in Ag* theory to estimate the deviation
between local fluctuations in that model from a Peierls’ type estimate, yielding a
degenerate ground state for A sufficiently large [13].

3.2. Statistical Physics. RP played a major role in lattice statistical physics.
There is a very large literature, with early work by Frohlich, Simon, and Spencer [10]
on continuous symmetry breaking, by Frohlich, Israel, Lieb, and Simon [8] on es-
tablishing RP, and by Dyson, Lieb, and Simon [4] on establishing phase transitions
in quantum spin systems. Lieb used these methods to analyze the ground state
vortices in some models [34], see also [2]. One can consult the review of Biskup [1]
for much other work.

3.3. Relations to Mathematics.

3.3.1. Representation Theory. The first work relating RP to representation theory
for quantum fields arose from the desire to obtain representations of the Poincaré
group from the analytic continuation of quantization of the representations of the
Euclidean group. After the initial work of Osterwalder and Schrader [42, 43], this
was investigated abstractly by Frohlich, Osterwalder, and Seiler [9] and by Klein
and Landau [32, 33].

This was eventually developed into an entire subfield of representation theory
and stochastic analysis studied by Klein and developed extensively by Palle Jor-
gensen, Karl-Hermann Neeb, and Gestur Olafsson, as well as their collaborators.
See [31, 28, 29] and the citations in these papers.

3.3.2. Relations to PDE. For a free scalar field, the RP property is equivalent to
a statement about monotonicity of the Green’s functions with respect to a change
from Dirichlet to Neumann boundary conditions. Let C' = (—=A +1)~! denote the
Green’s operator for the Laplacian on R?, and let Cp denote the Green operator
obtained by imposing vanishing Dirichlet boundary conditions on the time-zero
hyperplane. Let Cxn denote the corresponding Neumann Green’s function for
vanishing normal derivatives on the time-zero hyperplane. Then RP is equivalent
to the following statement of operator monotonicity on L?(R?),

Cp <Cxn.
This can be seen by expressing Cp and Cy using the method of “image charges,”
familiar in physics [11]. One can generalize this to obtain a condition for RP on

reflection-invariant spaces ¥ = ¥_ UXo U3 with an involution © that exchanges
Y+ and leaves ¥ fixed.



3.3.3. Fourier Analysis and the Inequalities. For the approach to classical Fourier
analysis through RP, see the contribution of Frank to these proceedings [5]. It is
interesting that it is possible to prove Fourier bounds in subfactor theory to prove
uncertainty principles, and this is related to the picture analysis that I describe in
§4 below [25, 26]. This area of research on the analytical inequalities for pictures
in a non-commutative algebra is just emerging; it seems to offer potential exciting
new insights.

3.3.4. Relations to Tomita-Takesaki Theory and the KMS Property. This is an-
other enormous subject. The reflection © arises in several different ways as the
Tomita-Takesaki reflection operator J. It is also related to the KMS property,
discovered by Haag, Hugenholtz, and Winnink [14].

3.3.5. Stochastic Quantization. The study of classical stochastic PDE’s has re-
ceived a great deal of attention recently. Physicists have proposed that a classical
equation with a white noise linear forcing term can be used to quantize a classical
equation—the method of stochastic quantization. The quantum distribution arises
as the limit of the distribution of solutions at infinite stochastic time. Unfortu-
nately reflection positivity does not hold for the distribution of the stochastic field
at any finite stochastic time [15].> Therefore it is difficult to see how to use this
method to obtain a limit that satisfies RP—except when one can analyze the limit
in closed form.

4. SOME ELEMENTARY REMARKS ON THE MATHEMATICS OF PICTURES

When Zhengwei Liu came to Harvard as a postdoctoral fellow in the summer
of 2015, we spent a good deal of time telling each other about each of our current
areas of research. After a while we realized that we could combine our work,
by defining a pictorial framework that we called “planar para algebras.” This
led us to a new way to think about the RP property. We implemented all this
in the framework of statistical mechanics models of parafermions on a lattice—a
setting we call PAPPA. In these examples, we found a geometric interpretation
and proof of RP [20] for a very wide class of Hamiltonians. We then found that our
models could be viewed as languages; we had first used this principle in joint work
with Alex Wozniakowski on quantum information [22, 20], and later found that it
provides very interesting insights into other fields of mathematics [21]. Hopefully
they will also contribute in the future to physics.

Parenthetically in the case of parafermions of degree d = 2, the fermionic case,
elementary parafermions are called Majoranas. As quadratic functions of Majo-
ranas represent classical and quantum lattice spins, the RP for parafermions leads
to RP proofs in these cases [24, 18, 19].

3We have only proved this for a linear field. One sees in this case that RP does hold in the
infinite-stochastic-time limit. If the Wightman functions for a non-linear theory are continuous
(as expected) in the perturbation parameter, then RP will also not hold at finite stochastic time.
In that case, however, one needs an independent method to establish RP for the limit.
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I believe that the simple fundamental idea embodied in our new pictorial ap-
proach to RP will prove fruitful in many other contexts. Let me explain some
central ideas that lead to RP, without much elaboration. Planar algebra is based
on the mathematics of a x-algebra of pictures. Multiplication is vertical compo-
sition of pictures, with algebraic right-to-left order represented by top-to-bottom
composition of pictures. For a picture T, one represents the adjoint map T +— T*
in the algebra by vertical reflection of the picture. If

R=| R |, then R*=| ©

Composed with multiplication, the vertical reflection gives an anti-linear anti-
homomorphism that reverses the order of multiplication of pictures,

K K q

RK

AT B R

R R M
[ ] [ [

It is natural to consider a second reflection © that is horizontal. This reflection
defines an anti-linear homomorphism of pictures,

The basic idea of the geometric notion of RP arises from the fact that the two
O-reflection of pictures is related to the *-reflection of pictures by a 180-degree
rotation that we donote Rot,. Algebraically Rot,(©(R)) = R*, while in pictures,

The horizontal reflection is the reflection for RP. The vertical reflection, on the
other hand is associated with the fact that R*R is positive, if the pictures have
a positive expectation defining a non-negative form that can be used to define an
inner product and a Hilbert space through the GNS representation.
In order to understand the geometric proof of RP, one needs to analyze the
horizontal multiplication of pictures. This horizontal multiplication defines the
8



convolution product of operators,

As there are two types of multiplication, rotation of pictures by 90 degrees is a very
important transformation. Denote this by §s; in terms of the input and output
strings, this permutes them cyclically by one:

SS T = EST = T
[ [ \

We named § the string Fourier transform (SFT) as it generalizes the normal
Fourier series. The SFT sends a product of neutral 1-qudit transformations to the
convolution of two SFT’s,

For a transformation with two input and two output strings this is a rotation by
90 degrees.

One needs a state on the algebra of pictures, in order to apply the GNS con-
struction and to recover the identity of pictures with elements of a Hilbert space.
This arises from attaching the input strings to the output strings, and it defines a
trace functional on the algebra of pictures.

4.1. The Geometric Interpretation of Reflection Positivity. One visualizes
the new geometric proof of RP from looking at Figure 1. This illustrates how one
relates the horizontal reflection O(R) of R with its vertical reflection R*. The
circle product has the pictorial meaning that ©(R) and R appear at the same
vertical level.

//_\i ’//\\\ ‘/
tr(e "M O(R) o R) = | | B || le- (" = @B 20 .
|| e BH | “&\ \\
\\/ 7/ \\// *v[l—v_‘] J ;\
N

F1GURE 1. The Picture Proof of Reflection Positivity.
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One then rotates part of the picture to obtain an expectation of the positive
Hilbert-space expectation of the quantity R*R. In the picture we see that the
positive-temperature expectation of ©(R) o R is given by another expectation of
R*R, and this expectation also involves the rotation of the Hamiltonian H.

There are many technical points, and in [20] you will find the complete proof
as well as the explanation of all the details. One must begin by proving that
our pictorial language is well-defined as a mathematical tool, and that it maps
onto the objects of interest in mathematical physics. For this we implemented the
parafermion algebra as an example of our model. We call the example PAPPA
(for parafermion planar para algebra).

One must establish the para-isotopy invariance of our pictures. It is necessary
to show that our expectation of pictures is a trace, and that it is positive. In this
way one can use the GNS construction to obtain a Hilbert space representation of
the pictures.

This led us to prove a variation of Jones’ famous index theorem [27] for the
quantization of the quantum dimension. Finally we had to understand how the
one-string rotation §, of a picture (the SFT of the picture) is actually a general-
ization of the Fourier transform of the function the picture represents. One needs
to pin down the relation between the SF'T and reflection invariance of H leading
to RP. It turns out that we can require that §s(H) is positive, as it occurs in the
expectation ( - ) in Figure 1. It is not necessary that the Hamiltonian itself be
positive for RP to hold, but only that its SFT is positive, This can be expressed
as H having a hermitian expansion in terms of a natural basis.

Having established the RP result for parafermions, one can ask how this relates
to RP for classical or quantum spin systems. Many spin systems reduce to the
case for Majoranas, namely parafermions of degree d = 2. An extensive analysis
of the relation between RP for Majoranas and RP for classical and quantum spin
systems can be found in [18].
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