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We study derivatives on an interval of length ` (or the associated circle of the same
length), and certain pseudo-differential operators that arise as their fractional powers.
We compare different translations across the interval (around the circle) that are charac-

terized by a twisting angle. These results have application in the study of twist quantum
field theory.

Consider the Hilbert space K = L2([0, `]; dx) over the interval of length `. It is

well known that the skew-symmetric operator of differentiation D = d
dx

with the

domain of smooth, compactly-supported functions yields a one-parameter family

of skew-adjoint extensions, parameterized by an angle χ. Each extension has an

orthonormal basis of eigenfunctions for D given by,

fk(x) =
1√
`
eikx , for k ∈ K =

2π

`
Z− χ

`
. (1)

The angle χ specifies a twist, and (1) extends each fk to a smooth function on R
satisfying

fk(x + `) = e−iχfk(x) . (2)

1. Motivation

We described the twisted interval above in terms of pure mathematics; yet twisting

plays several roles in physics. First, one often encounters parallel transport about a

closed trajectory. The physical role of twisting includes the fact that the condition

(2) ensures that angular momentum zero is not allowed, 0 6∈ K. Hence twisting

provides an infra-red regularization, which can be useful in the study of massless

fields. In fact, this author has taken advantage of these properties in recent works,

see [1, 2, 3] and other works cited there.

These investigations led to the genesis of the current paper, for in the detailed

estimates one must compare different twists. This comparison can be carried out

using the bounds that we establish here.

∗On leave from Harvard University.
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In a different direction, one is fascinated by the possibility to measure twisting

in the laboratory. A team of British physicists has accomplished this recently,

according to a report in Science [4]. One can complement photon helicity (which

takes two values) with a measurement of angular momentum (which takes values in

correspondence with the magnitude of the twist). In this way, one has the potential

to revolutionize communications through the increase in the density of data trans-

mission, for the possibility to measure twisting allows an individual photon to carry

more information than the single bit associated with helicity.

2. Fractional Derivatives

Let T = {`, χ} denote the interval and the twist, and let DT denote the finite linear

span of the set of basis vectors {fk}. Define DT as the closure of the derivative

operator d
dx

defined on the domain DT . The vectors fk form an eigenbasis for DT ,

so −iDT is essentially self adjoint, and the spectrum of its closure is K. Define the

energy operator for a unit mass as

µT = (I −D2
T )1/2 , (3)

which for large frequency Fourier modes is asymptotically equal to |k|. The large-

frequency behavior of µδT for δ > 0 is similar to the absolute value of a fractional

derivative of order δ. We also use the function µ(k) = (1+k2)1/2 defined in Fourier

space.

3. Comparison of Derivatives

Consider a pair of twists T and T ′ = {`, χ′} on a fixed interval, and the corres-

ponding orthonormal bases {fk = 1√
`
eikx} and {gk′ = 1√

`
eik
′x}, for k ∈ K and for

k′ ∈ K ′ respectively. Assume that

χ 6= χ′(mod 2π) , (4)

so the momentum sets are disjoint, K ∩K ′ = φ.

Proposition 3.1 (Domains). The self-adjoint operator µδT has the following

properties :

(i) If 0 ≤ δ < 1
2 , then the domain of the operator µδT contains D{T ′}.

(ii) If 0 ≤ δ < 1, then the domain of the sesqui-linear form µδT contains D{T ′} ×
D{T ′}.

(iii) For 0 ≤ δ < 1, the matrix elements of µδT in the basis {gk′} are

〈gk′1 , µ
δ
T gk′2〉=

4

`2
sin2

(
χ− χ′

2

)∑
k∈K

µ(k)δ

(k′1 − k)(k′2 − k)
, where k′1, k

′
2 ∈ K ′ .

(5)



July 24, 2002 15:21 WSPC/148-RMP 00142

Derivatives with Twists 3

Proof. (i) It is sufficient to show that the domain of µδT contains each gk′ , which

we now demonstrate. There exists a unitary operator U that relates the bases fk
and gk′ . The matrix elements Ukk′ = 〈fk, gk′〉 of U satisfy

gk′ =
∑
k∈K

Ukk′fk (6)

and direct computation yields

Ukk′ =
2ei(χ−χ

′)/2

`(k′ − k) sin

(
χ− χ′

2

)
= 〈fk, gk′〉 . (7)

By definition each vector fk lies in the domain of µδT , and hence so does any finite

linear combination of these basis vectors. Let Λ <∞ denote a parameter and define

an approximating sequence gk′,Λ to gk′ by

gk′,Λ =
∑
k∈K
|k|≤Λ

Ukk′fk ∈ D{T } . (8)

Clearly ‖gk′ − gk′,Λ‖ → 0 as Λ → ∞. If in addition it is the case that µδT gk′,Λ
converges as Λ→∞, then gk′ lies in the domain of the (self-adjoint) closure of µδT .

Since fk is an eigenvector of µδT , we infer

µδT gk′,Λ = µδT
∑
k∈K
|k|≤Λ

Ukk′fk =
∑
k∈K
|k|≤Λ

Ukk′µ(k)δfk , (9)

so that

‖µδT gk′,Λ‖2 =
∑
k∈K
|k|≤Λ

|µ(k)δUkk′ |2 =
∑
k∈K
|k|≤Λ

4µ(k)2δ

`2(k − k′)2
sin2

(
χ− χ′

2

)
. (10)

This sum over k is finite, and for δ < 1
2 the bound on the sum is uniform in Λ.

Furthermore, for Λ < Λ′,

µδT (gk′,Λ − gk′,Λ′) =
∑
k∈K

|Λ|<|k|≤Λ′

Ukk′µ(k)δfk , (11)

from which one infers

‖µδT (gk′,Λ − gk′,Λ′)‖2 =
∑
k∈K

|Λ|<|k|≤Λ′

|µ(k)δUkk′ |2

=
∑
k∈K

|Λ|<|k|≤Λ′

4µ(k)2δ

`2(k − k′)2
sin2

(
χ− χ′

2

)
. (12)

Since 2δ < 1, the sum on the right of (12) converges and

‖µδT (gk′,Λ − gk′,Λ′)‖ ≤ o(1) , (13)

as Λ→∞. Thus µδT gk′,Λ converges to a limit as Λ, Λ′ →∞, completing the proof

of (i).
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(ii) This follows immediately from (i).

(iii) Take the inner product of gk′1 with the representation (6) and use (7) to

obtain

〈gk′1 , µ
δ
T gk′2〉 =

∑
k∈K

Ukk′µ(k)δ〈gk′1 , fk〉 =
∑
k∈K
〈gk′1 , fk〉µ(k)δ〈fk, gk′2〉 . (14)

Substituting the values in (7) for the matrix elements of U yields (5) and completes

the proof.

Remark. We give here a second derivation of the identity (5) in the case that

δ = 0. Let a, b be non-integers and consider the convergent sum, which for a 6= b

equals

F (a, b) =
∑
n∈Z

1

(n+ a)(n+ b)
=

π sin(π(b − a))
(b− a) sin(πa) sin(πb)

. (15)

One can obtain the value above by considering the contour integral of a meromor-

phic function, ∫
Cn

π cot(πz)
1

(z + a)(z + b)
dz , (16)

taken on a sequence of circular contours Cn, centered at the origin and of radius

n+ 1
2 , where n ∈ Z+. For a 6= b the singularities of the integrand are simple poles.

Assuming also that n > |a|, |b|, the contour Cn encloses 2n+3 poles of the integrand,

as follows. The function π cot(πz) has a pole at each integer, with residue 1, and

Cn encloses 2n+1 of these poles. The other two poles occur at z = −a, −b. On the

contour Cn of length O(n) the function π cot(πz) is bounded uniformly in n, and

the function 1/|(z + a)(z + b)| tends to zero as O(1/n2) as n → ∞. Therefore the

magnitude of the integrals (16) converge to zero as O(1/n).

Using the Cauchy integral theorem we infer that the sum of the residues of the

integrand vanish. Using the addition law for sines, this yields in the n→∞ limit,

F (a, b) =
π cot(πa)

(b − a) −
π cot(πb)

(b− a) =
π sin(π(b − a))

(b− a) sin(πa) sin(πb)
. (17)

Letting b→ a gives F (a, a) =
∑
n∈Z(n+ a)−2 = π2/ sin2(πa). Thus in case b− a is

integer,

π−2 sin2(πa)F (a, b) =

{
1 if a = b

0 if 0 6= b− a ∈ Z
. (18)

Parameterize the sum (5) in the case δ = 0 as follows: take `k′j = 2πn′j −χ′ and

`k = 2πn− χ with n, n′j ∈ Z; take a = (χ′−χ)
2π and b = (χ′−χ)

2π + n′1 − n′2. Then a, b

are non-integer, while b− a is integer. In terms of these variables, (5) has the form

〈gk′1 , gk′2〉 = π−2 sin2(πa)F (a, b) , (19)

which by (18) equals δk′1k′2 .



July 24, 2002 15:21 WSPC/148-RMP 00142

Derivatives with Twists 5

Proposition 3.2 (Relative Bound). Let 0 ≤ δ < 1
2 and δ < 1

2δ
′. Then µδT µ

−δ′
T ′

is a bounded transformation with norm M,

‖µδT µ−δ
′

T ′ ‖ ≤M , (20)

where M = M(δ, δ′, `) can be chosen independently of χ, χ′.

Definition 3.3. (`1,∞ Norm). Consider an orthonormal basis B = {ei} for the

Hilbert space H and a closed linear transformation X with domain containing B
as a core. Let Xij = 〈ei, Xej〉 denote the matrix elements of X in the basis. Define

the `1,∞ norm of X with respect to the basis B as

‖X‖B1,∞ =

sup
i

∑
j

|Xij |

 sup
j′

(∑
i′

|Xi′j′ |
)1/2

. (21)

In case X is self-adjoint or skew-adjoint, the `1,∞ norm reduces to

‖X‖B1,∞ = sup
i

∑
j

|Xij |

 . (22)

Lemma 3.4. (`1,∞ Estimate). The `1,∞ norm given in Definition 3.3 dominates

the operator norm ‖X‖ of X,

‖X‖ ≤ ‖X‖B1,∞ . (23)

Proof. Let f =
∑

i fiei and g =
∑
i giei be unit vectors. Consider 〈f,Xg〉 =∑

ij f̄iXijgj . Thus the Schwarz inequality yields

|〈f,Xg〉| ≤
∑
ij

|fiXijgj |

≤

∑
ij

|f2
i Xij |

1/2∑
ij

|Xijg
2
j |

1/2

≤
(∑

i

|fi|2
)1/2

sup
i

∑
j

|Xij |

1/2(
sup
j

∑
i

|Xij |
)1/2

∑
j

|g2
j |

1/2

= ‖X‖B1,∞ , (24)

from which the claim follows.

Lemma 3.5. Let χ, χ′ ∈ (0, π). Then there exists a constant J = J(`) < ∞ such

that

sup
χ,χ′

sup
k∈K
k′∈K′

µ(k′ − k)
`|k′ − k| sin

(
|χ− χ′|

2

)
≤ J . (25)
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Proof. The momentum difference in the denominator has the value `(k′ − k) =

2πn+χ−χ′ for n ∈ Z. If n 6= 0, then `|(k′−k)| ≥ π. In this case, µ(k′−k)/`|k′−k|
is uniformly bounded, as long as ` is bounded away from zero. On the other hand,

if n = 0, then

µ(k′ − k)
`|k′ − k| sin

(
|χ− χ′|

2

)
=
µ((χ− χ′)/`)
|χ′ − χ| sin

(
|χ− χ′|

2

)
. (26)

Since |sinx/x| is bounded, it follows that (26) is bounded uniformly in χ, χ′ for

fixed `.

Lemma 3.6. Let α, β ∈ R with α + β > 1, and define γ = min{α, β, α + β − 1}.
Then there are constants 0 < M± = M±(α, β) <∞ such that

F (k) =
1

`

∑
p∈K

µ(k − p)−αµ(p)−β (27)

satisfies the upper bound

F (k) ≤
{
M+µ(k)−γ , if α, β 6= 1

M+µ(k)−γ ln(1 + µ(k)) , if α = 1 or β = 1
, (28)

and the lower bound

F (k) ≥
{
M−µ(k)−γ ln(1 + µ(k)) , if α = 1, β ≤ 1, or if β = 1, α ≤ 1

M−µ(k)−γ , otherwise
. (29)

Furthermore the same bounds hold if the sum ranges over p ∈ K ′ in place of p ∈ K.

Proof. The proofs for the lattices K and K ′ are the same. Furthermore µ(p) is

even, so it is no loss of generality to assume that β ≥ 0. Divide the p sum into three

disjoint regions:

I=

{
p : |p|≤ 1

2
|k|
}
, II=

{
p :

1

2
|k|< |p| < 2|k|

}
, and III={p : 2|k|≤|p|} ,

(30)

and denote the corresponding sums FI , etc.

First we prove the upper bounds. In region I, it is the case that µ(k − p) ≤
µ(3k/2) ≤ const. µ(k), so µ(k − p)|α| ≤ const. µ(k)|α|. Also µ(k − p) ≥ µ(k/2) ≥
const. µ(k), so µ(k − p)−|α| ≤ const. µ(k)−|α|. Therefore for either sign of α, there

is a constant M̃1 such that µ(k − p)−α ≤ M̃1µ(k)−α, and

FI(k) ≤ M̃1µ(k)−α
1

`

∑
p∈I

µ(p)−β ≤M1µ(k)−α


1 , if β > 1

ln(1 + µ(k)) , if β = 1

µ(k)−β+1 , if β < 1

≤ M1µ(k)−γ

{
1 , if β 6= 1

ln(1 + µ(k)) , if β = 1
. (31)
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Similarly, in region II use the bound µ(p) ≥ const. µ(k), as well as the bound

µ(p) ≤ const. µ(k) to obtain µ(p)−β ≤ M̃2µ(k)−β . Therefore

FII(k) ≤ M̃2µ(k)−β
1

`

∑
p∈II

µ(k − p)−α ≤M2µ(k)−β


1 , if α > 1

ln(1 + µ(k)) , if α = 1

µ(k)−α+1 , if α < 1

≤ M2µ(k)−γ

{
1 , if α 6= 1

ln(1 + µ(k)) , if α = 1
. (32)

Finally, in region III, it is the case that µ(k−p) ≥ const. µ(p) and also µ(k−p) ≤
µ(3p/2) ≤ const. µ(p). Thus

FIII(k) ≤ M̃3
1

`

∑
p∈III

µ(p)−α−β ≤M3µ(k)−α−β+1 ≤M3µ(k)−γ . (33)

In all three cases, and hence for the union of the regions, there is a constant M+

such that F (k) satisfies the upper bound

F (k) ≤M+µ(k)−γ

{
1 , if α, β 6= 1

ln(1 + µ(k)) , if α = 1 or β = 1
. (34)

In order to obtain a lower bound, use the above inequalities in the opposite

direction. It is convenient to assume that |k| is sufficiently large so that the sets

I and II are both non-empty. On the set of |k| too small to achieve this, direct

inspection shows that any contribution to F (k) from region III is bounded below

by a strictly positive constant. Then observe that in region I, it is the case that

µ(k− p)−|α| ≥ const. µ(k)−|α|. Also in region I one has µ(k− p)|α| ≥ const. µ(k)|α|.

Thus regardless of the sign of α there is a new constant M̃1 such that µ(k−p)−α ≥
M̃1µ(k)−α. We infer that

FI(k) ≥ M̃1µ(k)−α
1

`

∑
p∈I

µ(p)−β ≥M1µ(k)−α


1 , if β > 1

ln(1 + µ(k)) , if β = 1

µ(k)−β+1 , if β < 1

. (35)

Similarly in region II we use the bound µ(p) ≤ const. µ(k) and the assumption

β ≥ 0 to obtain µ(p)−β ≥ M̃2µ(k)−β . Therefore

FII(k) ≥ M̃2µ(k)−β
1

`

∑
p∈II

µ(k − p)−α

≥ M2µ(k)−β


1 , if α > 1

ln(1 + µ(k)) , if α = 1

µ(k)−α+1 , if α < 1

. (36)

Taking the greater lower bound from (35) with (36) yields the lower bound on F (k)

in (29) and completes the proof.
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Proof of Proposition 3.2. Let T = µδT µ
−δ′
T ′ . The matrix elements for T ∗T in the

{gk′} basis are

〈gk′1 , T
∗Tgk′2〉 = 〈gk′1 , µ

2δ
T gk′2〉µ(k′1)

−δ′µ(k′2)
−δ′

=
4

`2
sin2

(
χ− χ′

2

)∑
k∈K

µ(k′1)
−δ′µ(k)2δµ(k′2)

−δ′

(k′1 − k)(k′2 − k)
. (37)

The `1,∞ estimate of the operator norm of this self-adjoint matrix yields

‖µδT µ−δ
′

T ′ ‖2 = ‖T ‖2 = ‖T ∗T ‖ ≤ ‖T ∗T ‖B1,∞ . (38)

Therefore

‖µδT µ−δ
′

T ′ ‖2 ≤ sup
k′1∈K′

 ∑
k′2∈K′

|〈gk′1 , T
∗Tgk′2〉|



≤ 4

`2
sin2

(
χ− χ′

2

)
sup
k′1∈K′

 ∑
k∈K
k′
2
∈K′

µ(k′1)
−δ′µ(k)2δµ(k′2)

−δ′

|(k′1 − k)(k − k′2)|

 . (39)

Apply Lemma 3.5 to obtain the twist-independent bound

‖µδT µ−δ
′

T ′ ‖2 ≤ 4J2 sup
k′1∈K′

µ(k′1)
−δ′

∑
k∈K
k′
2
∈K′

µ(k)2δµ(k′2)
−δ′

µ(k′1 − k)µ(k − k′2)

 . (40)

This bound is a sum of positive terms, so if it is convergent, it must be summable

in any order. Apply Lemma 3.6 to the k′2 sum to obtain

‖µδT µ−δ
′

T ′ ‖2 ≤ 4J2`M(1, δ′) sup
k′1∈K′

(
µ(k′1)

−δ′
∑
k∈K

µ(k)2δ−δ′ ln(1 + µ(k))

µ(k′1 − k)

)
. (41)

Since 2δ − δ′ < 0, we infer that µ(k)2δ−δ′ ln(1 + µ(k)) ≤ M1µ(k)−ε for a constant

M1 < ∞ and any ε ∈ (0, δ′ − 2δ). Thus apply Lemma 3.6 to the remaining k sum

to obtain

‖µδT µ−δ
′

T ′ ‖2 ≤ 4J2`M(1, δ′) sup
k′1∈K′

(
µ(k′1)

−δ′
∑
k∈K

µ(k)−ε

µ(k′1 − k)

)

≤ 4J2`2M(1, δ′)M(1, ε) sup
k′1∈K′

µ(k′1)
−δ′−ε ln(1 + µ(k′1)) <∞ . (42)

This bound does not involve the angles χ, χ′, so the estimate is uniform in these

parameters. Renaming the final bound to be the constant M2 = M(δ, δ′, `)2 com-

pletes the proof.



July 24, 2002 15:21 WSPC/148-RMP 00142

Derivatives with Twists 9

Acknowledgment

I presented this material in preliminary form as part of a course of lectures. I am

grateful to Jon Tyson for suggesting the use of Lemma 3.5 to simplify my proof of

Proposition 3.2.

References

[1] Arthur Jaffe, Twist fields, the elliptic genus, and hidden symmetry, Proc. Nat. Acad.
Sci. 97 (2000) 1418–1422.

[2] Arthur Jaffe, The elliptic genus and hidden symmetry, Commun. Math. Phys. 219
(2001) 89–124.

[3] Arthur Jaffe, Twists, supersymmetry, and field theory, in preparation.
[4] Andrew Watson, New twist could pack photons with data, Science 296 (2002)

2316–2317.


