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Abstract. We give a topological simulation for tensor networks that we call the two-string
model. In this approach we give a new way to design protocols, and we discover a new
multipartite quantum communication protocol. We introduce the notion of topologically-
compressed transformations. Our new protocol can implement multiple, non-local compressed
transformations among multi-parties using one multipartite resource state.

1. Constructive Simulation and Topological Design

By constructive simulation we mean the development of a picture-language for quantum
information that yields intuition and insight, as well as understanding. Just as the choice of
language can determine style or tone in writing, the choice of a mathematical language can
influence one’s pattern of thinking. Different languages convey different ideas and insights
related to the same content. A good language can suggest the discovery of new relations and
aid the invention of new concepts.

Manin and Feynman introduced the concept of quantum simulation [1, 2, 3], and here
we explore the simulation of quantum processes from the point of view of using a picture-
language. We are not the first to study topological methods; early landmark papers using
topological methods in quantum information include [4, 5, 6]. The categorical approach
has been studied extensively in quantum information and tensor networks by many persons
[7, 8, 9, 10, 11, 12, 13, 14]. People also studied these subjects from a planar algebra point
of view [15, 16]. We believe that our topological simulation, presented in this paper, is
significantly different from past attempts and will prove to be useful.

Pictures have for a long time complemented algebra as a way to provide guidance. We focus
on communication which is intrinsic to quantum networks: this is the task of propagating
information from one place in the network to another. It is reasonable to think that topological
simulation based on isotopy is sufficient. In fact, communication seems especially suited
for topological design, as quantum communication protocols can be expressed in purely
topological form. We showed in [17] that one can recover fundamental concepts in quantum
information in this way. In this paper we show how to define new concepts and to use
topological simulation to design new protocols.

In §4–§5 we explain the concept of topological simulation in detail, and we define
topologically-compressed transformations—a category of transformations that includes all
controlled transformations.
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Then in §6 we use topological para-isotopy to design a new diagrammatic protocol that
we call multipartite compressed teleportation (MCT). We apply this protocol to implement
multiple non-local compressed transformations among multi parties—using one entangled
state as a resource state, local transformations, and classical communication (LOCC). We
show how one can represent MCT in terms of the usual algebraic elements that one employs
in circuit design. This protocol improves the efficiency of teleportation, compared with
two-party communication, by a factor of two.

The concepts of constructive simulation and topological design are model independent.
In this paper we study what we call the two-string model. In this model we can simulate
the Pauli matrices, measurement, and the resource state in a topological way. In many
communication protocols, the measurement-based recovery map is given by Pauli matrices.
The resource state is the Bell state, or the GHZ state [18]. Our model provides a topological
explanation of this fact.

It is interesting to find if other protocols, such as factoring [19] or secure sharing [20],
require using other elements of simulation in addition to topology.

2. Fundamental Diagrams in the Two-String Language

Our two-string language acquires its name from the fact that we represent transformations
of 1-qudits by diagrams with two input points and two output points. We obtain fundamental
diagrams for resource states, measurements, the Pauli matrices X, Y, Z, and the string Fourier
transform FS. Our strings are charged, with a label indicating the charge k ∈ Zd; this means
that we consider charges modulo d.

The reader may wish to read complete details about the two-string language that we
present in [21, 17]. However, in order to make this paper self-contained, we explain in this
section those aspects of the language that we require in this paper—without repeating the
detailed proofs.

2.1. Qudits and Transformations. Let d be the dimension of the single qudit space. We
represent qudits by charged strings in the shape of a cap. We generally omit the label for
any charge kj = 0. We place our strings in the plane.

Our convention is to place the charge on the left side of a vertical string. Isotopies that
reverse this placement are not allowed. However the string-Fourier relation allows one to
move a charge label over a cap or under a cup, see (7). One can use this relation to enable
isotopies that would otherwise move a label across a string from one side to the other.

We represent the n-qudit basis ~|k〉 = |k1, k2, · · · , kn〉 by n charged caps, and these have 2n
output points:

~|k〉 =
1

dn/4
k2

k1

kn· · · . (1)

By convention, we place the label on the righthand string in each cap.
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One denotes the adjoint by a charge-inverting vertical reflection, so the n-qudit matrix

units ~|k〉 ~〈`| = |k1, k2, · · · , kn〉〈`1, `2, · · · , `n| are represented by:

~|k〉 ~〈`| = 1

dn/2
k2

k1

kn

· · ·−`2
−`1

−`n

· · ·

. (2)

Therefore any n-qudit transformation T is a diagram with 2n input points on the top and 2n
output points on the bottom,

T = T· · ·
· · ·

︸ ︷︷ ︸
2n

. (3)

2.2. Planar relations. In this section we give relations between certain diagrams; the
consistency of these relations is proved in [21]. These relations provide a dictionary that
relates qudits, transformations, measurements, and diagrams. It is crucial that any diagram
with 2n input points and 2n output points represents an n-qudit transformation.

Recall that d is the dimension of the 1-qudit space. Let q = e
2πi
d , and ζ = q1/2 be a square

root of q satisfying ζd
2

= 1.

2.2.1. Multiplication yields additive charge of order d.

`

k
= k + ` , d = .

(4)

2.2.2. Para-isotopy for exchange of charge order.

k

`
= qk`

k

`
. (5)

Here we assume that the strings between charge-k string and charge-` string are neutral.

2.2.3. Twisted tensor product. The twisted tensor product interpolates between the two
vertical orders of the product. In the twisted product, we write the labels at the same vertical
height:

k ` ≡ ζ−k`
k

`

= ζk`
k

`
. (6)

In this case k, ` ∈ Z, and k and k + d yield different diagrams. If the pair is neutral, namely
` = −k, then the twisted tensor product is defined for k ∈ Zd.
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2.2.4. The string Fourier relation, for moving charge across a cap or cup.

k = ζk
2

k , and k = ζ−k
2

k . (7)

2.2.5. Quantum dimension.

=
√
d . (8)

2.2.6. Neutrality.

k = 0 , for d - k. (9)

2.2.7. Temperley-Lieb relation.

= , = . (10)

Based on the Temperley-Lieb relation, a neutral string only depends on the end points:

= , = . (11)

2.2.8. Resolution of the identity.

= d−1/2
d−1∑
k=0 k

−k
. (12)

2.2.9. Braid. We show in Proposition 2.15 of [21] that

ω =
1√
d

d−1∑
j=0

ζj
2

satisfies |ω| = 1 . (13)

The positive braid is

≡ 1√
ωd

d−1∑
k=0

−k
k

(14)

=
1√
ωd

d−1∑
k=0

ζk
2 −kk .

2.2.10. Pauli matrices. The Pauli matrices X, Y, Z are

I = , X = 1 , Y = -1 , Z = 1 -1 . (15)
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2.2.11. Bell State. The Bell state, as a two-qudit resource state shared by Alice and Bob, is
d−1/2 times

AliceBob

(16)

Here only the double caps represent the Bell state; the other labels are for explanation. The
dashed, red line indicates that the two persons have distinct localizations. The double cap
can pass the red line. This means that the corresponding state can be shared between Alice
and Bob as an entangled resource state. We use a corresponding n-qudit resource state given
in (22) for designing our protocol.

2.3. Algebraic relations for some 1-qudit transformations. The algebraic definitions
of the Pauli X, Y, Z are

X|k〉 = |k + 1〉 , Y |k〉 = ζ1−2k|k − 1〉 , Z|k〉 = qk|k〉 . (17)

The quantum Fourier transform matrix F and the Gaussian matrix G are defined by

F |k〉 =
1√
d

d−1∑
`=0

qk`|`〉 , G|k〉 = ζk
2|k〉 . (18)

These matrices are unitary, and they satisfy many interesting relations, including

Xd = Y d = Zd = F 4 = G2d = (FG)3ω−1 = I , (19)

XYX−1Y −1 = Y ZY −1Z−1 = ZXZ−1X−1 = q , (20)

XY Z = ζ , FXF−1 = Z , GXG−1 = Y −1 . (21)

We have shown that these matrices generate the single qudit Clifford group in Proposition 9.1
of [21]. The representations of the 1-qubit Clifford group were studied in [22]. For the multi-
qubit case, the representations of the Clifford group were studied in [23], where one can find
further references about the applications in quantum information. It would be interesting to
generalize those results to the qudit case.

2.4. Multipartite Resource States. Greenberger, Horne, and Zeilinger introduced the
classic multipartite resource state that we denote |GHZ〉 in [18]. Experimental work on
|GHZ〉 was achieved in [24, 25, 26].

We introduced our n-qudit resource state |Max〉 in [17]. This state generalizes the Bell
state (16) and has the diagrammatic representation,

|Max〉 = d−n/4 · · ·︸ ︷︷ ︸
2n

. (22)
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The algebraic interpretation of this resource state is also interesting. Let ~|k〉 = |k1, k2, . . . , kn〉
denote an n-qudit state with charges ~k = (k1, · · · , kn). Also let |~k| =

∑n
j=1 kj ∈ Zd denote

the total charge. We have shown that

|GHZ〉 = d−
1
2

d−1∑
k=0

|k, k, · · · , k〉 , while |Max〉 = d
1−n
2

∑
|~k|=0

|k1, k2, . . . , kn〉 . (23)

In fact these two resource states are related by the local operation of the quantum Fourier
transform,

|GHZ〉 = (F ⊗ · · · ⊗ F )|Max〉 , (24)

where F denotes the 1-qudit quantum Fourier transform defined in (18).

3. Teleportation

One could say that the modern theory of quantum communication networks began in 1993
with the teleportation protocol discovered by Bennett, Brassard, Crépeau, Jozsa, Peres, and
Wootters [27]. This protocol allows one to disassemble a quantum state located at Alice’s
location, and to reconstruct it at Bob’s location. In order for the reconstruction to succeed,
Alice and Bob prearrange to share a specific entangled state, which is utilized as a resource
for the protocol. In addition, they share some purely classical information.

Preskill, Gottesman, and Chuang described the notion of quantum software for solving
problems in quantum computation and quantum communication [28, 29]. Recently, Pirandola
and Braunstein cite teleportation as the “most promising mechanism for a future quantum
internet” [30]. One can realize quantum networks through bidirectional quantum teleportation
(BQST).

The first experimental realization of teleportation has been achieved in [31]. A tripartite
resource state was utilized for pairwise teleportation in a quantum network [32]. Experimental
work on long-distance teleportation has been achieved [33, 34, 35]. The Quantum Science
Satellite built by Pan and his coworkers provides an opportunity to test teleportation at
record-breaking distances [36, 37].

4. Topological Compression: Informal Discussion

A fundamental concept that we introduce in this paper is a topologically-compressed
transformation. Our notion of topological compression becomes transparent in terms of the
two-string model for quantum information. One can visualize compression of a transformation
in terms of the diagrams that describe it. Topological compression is compatible with use of
our multipartite resource state |Max〉 illustrated in (22).

Basically, the information for a compressed transformation on a qudit is carried by one of two
strings. For transformations on a single qudit, the Pauli matrices X, Y in the representation
(15) are compressed. But Pauli Z is unitarily equivalent to Pauli X, so it too is compressed.
Let us explain this in terms of a more general example.
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Suppose that Alice and Bob are at separate locations and want to implement a non-local,
two-qudit transformation T . The topological simulation of that goal is given by the following
diagram:

AliceBob

T .

If one applies a topological isotopy, one can move the red line so the transformation is
performed completely by Alice. This is the solution, and its topological simulation is

AliceBob

T . (25)

This topological isotopy does not change the function of the diagram, but does change its
interpretation in quantum information. After isotopy, the diagram means that Bob can
teleport his input to Alice; then Alice can implement the transformation T locally on her
computer and teleport the result back to Bob using BQST.

It is well-known that the cost of teleportation for a general transformation is two resource
states. Recall that one resource state allows two strings to pass across the red dashed line,
as explained for the Bell state in (16). Thus one has an indication from (25) that the cost
of teleportation can be estimated by counting the number of strings that pass over the red
dashed line.

However Zhou et al. and Eisert et al. pointed out that the cost of BQST may not be
optimal. For certain transformations, including CNOT, they gave a teleportation protocol
with lower cost [38, 39]. This optimization has been further studied in [40], and in [41, 42]
one finds extensive references.

So it is natural to ask the question: what transformations can be teleported with less
cost, compared with BQST? We now characterize topologically-compressed transformations
and show that they have this property. All controlled transformations are topologically
compressed.

Following the above discussion, consider any 2-qudit transformation that can be represented
by the following diagram:

T



8 ARTHUR JAFFE, ZHENGWEI LIU, AND ALEX WOZNIAKOWSKI

In other words, such a transformation acting on Bob’s qudit only requires the information on
one of the two strings. We say that such transformations are topologically compressed; we
give the precise statement as Definition 5.4. This covers a large variety of transformations
that are commonly used in protocols. In this case the corresponding isotopy yields:

AliceBob

T

.

As only two strings pass over the red line, one expects that it is possible to implement this
non-local transformation using only one resource state, rather than two.

In §6, we introduce a new protocol to teleport information that is captured on one string
using one resource state. We call this protocol compressed teleportation (CT). It relies
on using local operations and classical communication (LOCC). Furthermore it optimizes
the entanglement resource cost for teleportation of compressed transformations. The CT
protocol reduces the costs by 50% compared with BQST. In BQST, one needs two resource
states. In our CT protocol, we use one resource state. Since CNOT, Tofolli, and controlled
transformations are all topologically compressed, our protocol covers the previous teleportation
protocols for CNOT, Tofolli, and controlled transformations.

We then generalize this protocol to multipartite communication in §6.1. Our MCT protocol
does not reduce to multiple, bipartite communications. If one realizes this teleportation by
BQST, then one would need n bipartite resource states, and constructing these requires 2n
noiseless channels. In our MCT protocol, we use one n-partite resource, which requires n
noiseless channels to construct. Therefore we reduce the cost by 50%.

5. Topological Compression: Definitions

If the diagrammatic representation of a 2-qudit transformation T has a free through string1

on the left,

T , (26)

then we consider such transformations as topologically compressed on the first qudit.

Proposition 5.1. For an n-qudit transformation T , the following conditions are equivalent:

(1) The transformation T is block diagonal on the first qudit.

1By “through string,” we mean a neutral string that passes from the jth input to the jth output and that
crosses no other string.
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(2) There are (n− 1)-qudit transformations T (`), ` ∈ Zd, so that

T =
d−1∑
`=0

|`〉〈`| ⊗ T (`) , (27)

i.e., T is a controlled transformation, where the first qudit is the controlled qudit.
(3) There are qudit transformations T ′(`), ` ∈ Zd, so that

T =
d−1∑
`=0

Z` ⊗ T ′(`) . (28)

(4) The transformation T commutes with Pauli Z on the first qudit.

Proof. Obviously (1) ⇐⇒ (2) ⇐⇒ (3) ⇒ (4). Since Z has distinct eigenvalues on the
diagonal, we have that (4)⇒ (2). �

A transformation T is called Z-compressed on the first qudit if one of the above conditions
holds.

Definition 5.2. In general, we say that a transformation T is Z-compressed on the jth-qudit
if T commutes with the action of Pauli Z on the jth-qudit. Similarly we say T is X (or
Y )-compressed on the jth qudit, if it commutes with the action of Pauli X (or Y ) on the jth

qudit.

We can switch between the three compressed transformations using FXF−1 = Z and
GXG−1 = Y −1.

Theorem 5.3. A transformation T has the representation (26) if and only if it is X-
compressed on the first qudit.

Proof. Applying the conjugation of F on the first qudit to Proposition 5.1, we have the
following equivalent conditions:

(1) The transformation T is X-compressed on the first qudit.
(2) There are (n− 1)-qudit transformations T ′(`), ` ∈ Zd, so that

T =
d−1∑
`=0

X` ⊗ T ′(`) . (29)

(3) The transformation T commutes with Pauli X on the first qudit.

The transformation on the second qudit I ⊗ T ′(`) is represented by

T ′(`) . (30)

By the Jordan-Wigner transformation, the X ⊗ I is represented by

1 −1 1 . (31)
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Therefore if T is X-compressed, then T has the representation (26) by condition (2).
On the other hand, if T has the representation (26), then it is algebraically generated by

the three transfomations

1 , 1 , 1 . (32)

By para-isotopy, the three generators commutes with X ⊗ I. So T also commute with X ⊗ I.
By condition (3), T is X-compressed on the first qudit. �

The characterization and the proof also work for the n-qudit case.

Definition 5.4. The transformation T ′ is compressed on the jth-qudit if T ′ = UTV , where
T is Z-compressed on the jth-qudit and U, V are local transformations on the jth-qudit.

6. The Mutipartite Compressed Teleportation (MCT) Protocol

6.1. MCT for Controlled Transformations. Suppose a network has one leader and n
parties. Also assume that the jth party can perform a controlled transformation

Tj =
d−1∑
`=0

|`〉〈`| ⊗ Tj(`), (33)

where the control qudit belongs to the person Pj in the jth party, and Tj(`) can be an
arbitrary multi-person, multi-qudit transformation on the targets. (The algebraic notation
for the controlled transformation Tj is shown in Figure 1.)

Tj(`)

•

Figure 1. Controlled transformations.

With these assumptions, we design a circuit shown on the left of (34), where the resource

state |GHZ〉 is represented by d−
1
2

d−1∑
k=0

|k, k, · · · , k〉. We call it the Multipartite Compressed

Teleportation protocol (MCT).
The function of the circuit is shown on the right of (34). The leader can perform any

non-local controlled transformation Tj to the jth party in the network, for 1 6 j 6 n. The
leader has the common control qudit, and the jth party performs the transformation Tj(`)
for control qudit `.

Surprisingly, one can implement these n non-local transformations using only 1 resource
state shared by the leader and the persons Pj.

Theorem 6.1. It costs one (n + 1)-partite resource state |GHZ〉 and 2n cdits (classical
information channels) to implement controlled transformations Tj shared by a Leader and the
jth party, for 1 6 j 6 n. The time cost is the transmission of two cdits and the implementation
of local transformations.
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d−
1
2

∑
k∈Zd

Party 1 T1(`)

k
...

X • F−1

Party n Tn(`)

k X • F−1

k F−1 • F−1

Leader Z Z

=

Party 1 T1(`)

Party n

...
Tn(`)

Leader • •

(34)

We specify the MCT in the usual algebraic terminology as a circuit. One can consider CT
as a special case for two parties. From this picture, one can understand the protocol without
knowing its topological significance. In §7 we derive this protocol from topological simulation.

7. Topological simulation for MCT

We give the MCT diagrammatic protocol for X-compressed transformations. The design
of this protocol is equivalent to the design for Z-compressed transformations by applying
unitary conjugation.

We summarize the use of topological simulation to design the protocol in (35). Let us call
the left-hand side of the identity “Picture 1,” the middle term in the identity “Picture 2,”
and the right-hand side of the identity “Picture 3.” Picture 1 represents the simulation of
the goal, where the Leader desires to share an X-compressed transformation Tj with the jth

party, for 1 6 j 6 n.
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Leader

Topological simulation

T1

T2

...

Tn

Isotopy
=

Leader

· · ·

T1

T2

Tn

= ζ−`
2
0

Leader

Diagrammatic protocol

−`0
· · ·

T1

−`1

T2

−`2

Tn

−`n
n∑

i=0

`i

. (35)

The non-local transformation Tj in Picture 1 cannot be implemented directly. We first
apply topological isotopy, in a way that isolates each transformation Tj in the region of the
jth party. (These regions are separated by the red dashed lines.) Then each Tj becomes local.
We also move the intersections of the strings and the red dashed lines to the top, so that the
non-locality only appears in the state, which turns out to be the resource state. This is how
one obtains Picture 2 from Picture 1.
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The cups in Picture 2 of (35) represent measurements. We add charges on cups to indicate
the results of the measurements. Each resulting charge in a measurement must be balanced
by an opposite charge. We add that charge on the corresponding string in the region of the
Leader. This may also give a global phase from applying the string Fourier relation (7) for
the Leader’s charge. These charged strings define measurement-based recovery maps given by
Pauli X. Thus we arrive at Picture 3, which is a diagrammatic protocol for MCT. It includes
one multipartite resource state |Max〉 and LOCC.

We construct the diagrammatic MCT protocol using the 2-string language. From the
above topological simulation, we observe that a natural resource state for multipartite
communication is |Max〉, which we recognize from (22). In fact, |Max〉 is unitarily equivalent
to the usual resource state |GHZ〉. The measurement-based recovery map arising from
topological design is given by Pauli matrices. This is a general phenomenon in various
protocols for communication.

Using the two-string language dictionary in [17], one can translate this diagrammatic
protocol to the algebraic circuit given in (36).

Party 1

T1

0
...

Fs

...
Z−1

Party n

Tn

0 Z−1

0 • F−1 • •

Leader X X−1 X

=

Party 1

T1Party n

...

Tn

Leader

(36)

Here one simplifies the protocol by the identity in Figure 2.

•

X−1 X

=

Figure 2.

We represent |Max〉 as Fs|~0〉 in (36), where the state |~0〉 = |0, 0, . . . , 0〉 denotes the n-qudit

with charge 0 for each 1-qudit, and we call |~0〉 the ground state. We mention the extremely
interesting transformation Fs that appears here, and that we call the string Fourier transform.
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It is a mechanism to produce the n-qudit resource state |Max〉 from the ground state |~0〉. We
explore Fs extensively in [21].

Taking the conjugation of local transformations, we obtain the MCT protocol for other
types of compressed transformations. In particular, taking the conjugate of the Fourier
transform F , we obtain the MCT protocol for Z-compressed transformations or controlled
transformations in (34) .

In the case with only two persons, the MCT protocol says: Assume that a quantum network
can perform a transformation T , which is compressed on a 1-qudit belonging to a network
member Alice. Then Alice can teleport her 1-qudit transformation to Bob using one edit and
two cdits. One can easily derive the entanglement-swapping protocol, and the teleportation
of the Tofolli gate from it.

8. Conclusion

In this paper we extend our two-string model for quantum information.

(1) We articulate the concept of constructive simulation and topological design.
(2) We introduce topological compression and define compressed transformations.
(3) We define a protocol to teleport compressed transformations.
(4) Our new protocol costs only one multipartite resource state to implement multiple,

non-local transformations between multiple parties. For more than two parties,
our multipartite teleportation protocol does not reduce to compositions of bipartite
communications.
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