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We review the emergence of constructive quantum field theory, we discuss how
it fits into the framework of mathematics and physics, and we point to a major
unsolved question.

1 Background

The pioneering work of early non-relativistic quantum theory led to the under-
standing that quantum dynamics on Hilbert space is a comprehensive predictive
framework for microscopic phenomena. From the Bohr atom, through the non-
relativistic quantum theory of Schrödinger and Heisenberg, and the relativistic
Dirac equation for hydrogen, agreement between calculation and experiment im-
proved rapidly over time. The incorporation of special relativity and field theory
into quantum theory extended the scope of perturbative calculations, and these
were tested through precision measurements of spectra and magnetic moments.
Beginning in the 1940’s, experimental tests of the Lamb shift and the anomalous
magnetic moment of the electron detected effects that one can ascribe to fluctu-
ations in quantum electrodynamics. These effects deviated numerically from the
predictions arising from equations that describe a fixed number of particles, so they
were accurate tests of the quantum field hypothesis. Today these experiments have
evolved to yield quantitative agreement with the most precise observations and
calculations achieved in physics. For example, the anomalous magnetic moment
of the electron is known theoretically and experimentally to amazing precision:
(g − 2)/2 = 0.001159652200(±40). The success of this work, as well as the success
of other less accurate, but compelling, predictions for weak and strong interactions,
convince us to accept quantum field theory as the correct physical arena to describe
particle physics down to the Planck scale.

But the success of relativistic field theory calculations and of perturbative renor-
malization also led to a logical puzzle: is there any physically-relevant, relativistic
quantum field theory that is also mathematically consistent? Put differently, can
one give a mathematically complete example of any non-linear theory, relevant
for the description of interacting particles, whose solutions incorporate relativis-
tic covariance, positive energy, and causality? One must understand perturbative
renormalization in order to resolve this problem, and have control over renormal-
ization from a non-perturbative (or “exact”) point of view. In fact, one needs to
overcome sophisticated problems, such as whether a field theory may appear correct
on a perturbative level, while it may have no meaning at a non-perturbative level.
Doubts about quantum electrodynamics or scalar meson theory were raised early
by Dyson and Landau. They recur from the point of view of the renormalization
group in the work of Kadanoff and Wilson, as well as in the analysis of “asymptotic
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freedom” in the 1970’s. In four dimensions, this has focused attention on finding a
solution to a non-abelian Yang-Mills theory.

Assuming a positive answer to this existence question, then can one develop a
calculational scheme to determine properties of such an example, both perturba-
tively and non-perturbatively? Strong-coupling calculations, as well as calculations
near critical values of the coupling constants, have been the most elusive to un-
derstand. Thus one wants to understand both the quantitative structure of field
theories, as well as qualitative features such as the dependence of the theories as
functions on the space of coupling constant parameters.

At the same time, physicists have tried to make further theoretical progress
through ambitious attempts to imbed quantum field theory within a theory of
strings, by which they hope to combine quantum theory with general relativity,
and to predict the structure of space-time. There is also the appealing attempt to
integrate non-commutative geometry into the picture. One would like to introduce
the notion of quantization directly at the level of space-time, and to describe field
theories on quantum space-time, rather than applying quantization to fields that
live on a classical space-time. For the time being, all these methods remain beyond
the realm of full understanding.

2 The Emergence of CQFT

Constructive quantum field theory (CQFT) was formulated forty years ago as an
effort to find specific examples of non-linear quantum fields that fit within a math-
ematically complete description of quantum mechanics. Prior to the constructive
field theory program, only a few exactly soluble relativistic field theories existed.
Either they were free fields, or else they had solutions that could be expressed as
functions of free fields (such as the Schwinger and Thirring models). In either case,
they described (or appear to describe) particles without interaction or scattering.

The emergence of constructive quantum field theory led to the direct attack
on showing that solutions exist to the variational equations arising from particular
Lagrangians. Constructive field theorists took perturbation theory as a reliable
guide to the behavior of a particular equation. One could incorporate this infor-
mation into the mathematical analysis, leading to the proof of exact results based
on perturbative guidance.

The most basic questions raised by CQFT in the 1960’s revolved about whether
examples of quantum field theories exist within the axiomatic frameworks formu-
lated by Wightman or by Haag and Kastler. The Wightman axioms describe the
vacuum expectation values of products of fields that transform covariantly under
the action of the group of inhomogeneous Lorentz transformations {a,Λ}, where Λ
designates a homogeneous Lorentz transformation and where a denotes a space-time
translation. Thus they involve constructing the fields ϕ(x, t), along with a unitary,
positive-energy representation U(a,Λ) of the inhomogeneous Lorentz group, both
of which act on the Hilbert space H of the quantum theory. Furthermore, one re-
quires that a zero-energy ground state Ω ∈ H of the Hamiltonian dynamics exists,
called the vacuum. This vector Ω should remain invariant under the full group
U(a,Λ), and Wightman assumes furthermore that the vacuum is unique. In other
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words, zero is a simple eigenvalue of H.
The unitary representation U(a,Λ) of the Lorentz group of space-time symme-

tries determines a ∗-automorphism group of transformations of fields,

σa,Λ: ϕ→ U(a,Λ)ϕU(a,Λ)∗ . (1)

Scalar boson fields are characterized by the transformation property

(σa,Λ ϕ)(x̂) = ϕ(Λx̂+ a) , (2)

where x̂ = (x, t) denotes a space-time point, and spinor fields or vector fields have
their own transformation laws. The Haag-Kastler axioms deal with the fields (or
bounded functions of the fields), along with a positive energy representation of the
automorphism group σa,Λ. One advantage of dealing with the automorphisms σa,Λ,
rather than with U(a,Λ), is that one can construct the automorphism group locally,
using different generators in different bounded space-time regions, and then patch
together a global automorphism group from the local pieces. This procedure may
therefore avoid problems with constructing the global generators of U(a,Λ).

Even this more general framework lacked examples. One hoped that a real
breakthrough on the side of analysis would ultimately lead to an understanding
of all alternative axiom schemes. So one attempted a frontal attack on various
existence problems, both on Minkowski space, and also on variations of the frame-
works appropriate to compactified configuration space. At the inception of these
CQFT efforts, even finding examples of super-renormalizable Lagrangians in two-
dimensional space-times appeared extremely difficult, if not beyond reach. Wight-
man presented an optimistic point of view in 1964 at Cargèse,1 mainly from the
point of view of understanding the vacuum expectations of a number of known solu-
ble examples. This author gave a Hamiltonian framework of estimates to construct
regularized fields,2 and Lanford gave another.3

Still examples without ultra-violet regularization eluded researchers. Kurt
Symanzik laid out a ground breaking framework to study the analytic continu-
ation (to imaginary times) of vacuum expectations.4 However, some years later
Symanzik evaluated his own functional integral program as lacking, when he com-
pared it point by point with the Hamiltonian approach.5 At the time Symanzik’s
methods appeared beyond the scope of possible mathematical analysis, and he de-
cided to pursue other problems.

3 The First Examples

Over the following twelve years, 1965-1976, constructive field theorists finally
achieved the non-perturbative construction of field theories with non-linear inter-
action in two-dimensional and in three-dimensional space-times. Both the Hamil-
tonian approach and the functional integral approach ultimately proved successful.
In fact, using features of both methods turned out to be the most powerful point
of view. Looked at in perspective, it is a shame that Symanzik abandoned his
approach when he did.

Early progress on answering these questions in a two-dimensional space-time
owed a great deal to the 1965 paper of Nelson6 showing stability for the ϕ4 Hamil-
tonian of a field ϕ(x, t) defined on a cylindrical space-time, x ∈ S1, t ∈ R. The
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stability estimate leads via the Friedrichs extension to a self-adjoint extension of H,
but does not in itself give uniqueness of that extension (essential self-adjointness),
and its concomitant dynamics ϕ(x, t) = eitHϕ(x, 0)e−itH .

The proof of essential self adjointness, as well as the first non-trivial example
of solutions to the relativistic field equation in a 2-dimensional Minkowski space-
time (x, t) ∈ M2 appeared in a series of papers written by this author jointly with
Glimm.7,8,9,10 This hyperbolic, non-linear equation for ϕ(x, t) has the form

ϕ+ ϕ+ λϕ3 = 0 , (3)

where denotes the wave operator ϕ = ϕtt−ϕxx, where λ is a positive parameter,
and where the non-linear power ϕ3 in the equation requires special definition. The
solution to this equation locally is not an operator valued field; rather it is an
operator-valued distribution. As the equation (3) is non-linear, its mathematical
analysis requires an intermediate step in which one studies a smoothed out (or
regularized) equation. In this case, the regularization can be achieved by truncating
the Fourier representation of the field, ϕ̃(k) =

∫
ϕ(x, 0)eikxdx, when the magnitude

of the Fourier variable k exceeds κ. The equation (3) is obtained in the limit
κ→∞.

The equation (3) is known as the ϕ4
2 wave equation, where the subscript denotes

the dimension of space-time, and the quartic power signifies that the interaction
energy density 1

4λϕ
4 is quartic. The methods leading to these results were soon

generalized to yield the solution to equations on M2 with a large class of polynomial
non-linearities with energy bounded from below, also known as the P(ϕ)2 equations.
Extensive references can be found in Quantum Physics.11

The initial data ϕ,ϕt for the partial differential equation (3) are operator-valued,
rather than the usual distributions that one encounters in non-linear PDE. The
initial data are required to satisfy the usual canonical commutator constraints of
quantum theory,

[ϕ(x, 0), ϕt(x′, 0)] = iδ(x− x′) I . (4)

Here δ denotes the Dirac measure. In addition one requires

[ϕ(x, 0), ϕ(x′, 0)] = [ϕt(x, 0), ϕt(x′, 0)] = 0 . (5)

The presence of the singularities in (4) clearly indicate the singularity of the so-
lutions ϕ, and signals that the non-linear power ϕ3 that occurs in (3) requires a
special definition; this is a simple example of the phenomenon of “renormalization.”
In this case the “cube” is replaced by a cubic polynomial ϕ3 − 3cϕ, where c is a
divergent constant, and the coefficient 3 is conventional. This constant is suggested
by lowest order perturbation theory. Let us consider a sequence of regularized equa-
tions as introduced above, parameterized by κ, and with non-linearity ϕ3

κ− 3cκϕκ.
This non-linearity converges as κ→∞ and cκ ∼ lnκ, if we choose the coefficient of
the logarithm according to lowest order perturbation theory. Thus the individual
terms in

ϕ3 = lim
κ→∞

(
ϕ3

κ − 3cκϕκ

)
(6)
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have no meaning, but their sum is a defined by a well-behaved limit and provides
the non-linearity in the wave equation (3). The root of the difficulty in estab-
lishing stability stems from the fact that the “normal-ordered” interaction energy,
integrated over a compact domain I,

VI = lim
κ→∞

1
4

∫
I

(
ϕ4

κ − 6cκϕ2
κ + 3c2κ

)
dx =

1
4

∫
I

:ϕ4:dx (7)

is a densely defined operator, but it is unbounded from below. Here the colons
: · : denote substituting a Hermite polynomial for each monomial of ϕ, also called
normal ordering. Stability is the statement that the operator H(I) = H0 + VI is
bounded from below, where H0 is the Hamiltonian for the linear wave equation
ϕ+ ϕ = 0, with the zero-energy ground state given by the Fock no-particle state

Ω0. In fact, cκ =
〈
Ω0, ϕ

2
κ(x, 0)Ω0

〉
. In the case that VI is defined in (7), the sum

H(I) happens also to be densely defined.
The original construction exhibited that the domain of dependence of the fields

has the expected unit velocity of propagation. The Lorentz boost can be locally
implemented by the first moment of the energy density. By constructing a self-
adjoint, local generator of the Lorentz boosts, we showed that the local algebras of
observables constructed from the field form a Lorentz-covariant net, and therefore
the field theory has the desired Haag-Kastler properties. Therefore, the quantum
theory associated with the solution to the equation (3) gave the first non-trivial
example of the Haag-Kastler axiom scheme.12

4 Quantum Theory as Statistical Physics

The introduction by Schwinger of Euclidean quantum field theory, and the realiza-
tion by Kurt Symanzik that Euclidean fields have beautiful, Euclidean-covariant
functional integral representations,4 led to a fascination with Euclidean phenom-
ena. These functional integral representations yield a Feynman-Kac representation
of the heat kernel e−tH . They also have the interpretation of being a statisti-
cal mechanics average of classical fields (over a configuration space of Euclidean
field configurations), weighted by the Boltzmann probability e−SE . Here SE de-
notes the classical action functional continued to Euclidean (imaginary) time. The
Euclidean n-point Green’s functions are the nth-moments of the measure. Further-
more, Symanzik showed that a ϕ4 interaction corresponded to the intersection of
two random paths. The problem was that there was no definition of the putative
functional integral as a true integral, given by a countably-additive Borel measure.

Quite aside from the validity of a functional-integral representation for the Eu-
clidean Green’s functions, there was another mystery. The existence of Euclidean
Green’s functions (the analytic continuation of vacuum expectation values to purely
imaginary times) follows from the positive energy assumption of the Wightman ax-
ioms. However, one might begin by assuming the existence of a set of Euclidean
Green’s functions, without knowing a priori that these Green’s functions arose from
a field theory. Could one then find sufficient conditions to justify the analytic con-
tinuation back to a quantum theory on a Hilbert space? In other words, could one
base a construction of field theories on establishing the existence of the Euclidean
Green’s functions?
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In 1971, Nelson introduced a probabilistic solution to this problem,13 based on
the construction of a Markov field, motivated by Symanzik. Nelson’s mathemati-
cally complete construction has as a consequence the existence of a Hilbert space
and a quantum field acting on that space. This method assumes an a priori Marko-
vian structure that can easily be verified for the free Euclidean field, and thus gave
rise to the free Markov field. However, this structure is special to bosons, and it
presented difficulty in verifying the Markov hypothesis for interacting fields. The
Markov framework is sufficient, but it does not give an equivalence of Euclidean
and Hilbert space methods. It was used in very interesting ways by Guerra, Rosen,
and Simon.14,15

Osterwalder and Schrader discovered another solution based on properties of
the Euclidean Green’s functions.16 They showed that their axioms for Euclidean
Green’s functions are equivalent to the Wightman theory on Minkowski space.
Following this discovery, Euclidean fields became the fundamental tool to investi-
gate Minkowski field theory. The beautiful simplicity of this approach is that it
relies on a positivity condition, and in many cases this positivity is easy to pre-
serve in approximating (cutoff) field theories. Their condition of reflection (or
Osterwalder-Schrader) positivity yields the existence of the Hilbert space H, along
with the existence of an positive-energy Hamiltonian, and an analytic continuation
from Euclidean space to Minkowski space. In the case of a free bosonic field with
two-point Euclidean Green’s function C, with P+ the orthogonal projection in L2

onto t ≥ 0, and with Θ the reflection in the t = 0 plane, the Osterwalder-Schrader
positivity condition states

0 ≤ P+ΘCP+ . (8)

It turns out17 that this positivity is a consequence of the classical operator mono-
tonicity condition for Green’s functions of the Laplacian on P+L

2(Rd),

CD ≤ C ≤ CN , where C = (−∆ +m2)−1 , (9)

and where CD (respectively CN ) represents the Green’s function of −∆ +m2 with
Dirichlet (respectively Neumann) data on the t = 0 plane. The reflection posi-
tivity condition also can be established for interacting scalar, fermion, or gauge
fields with local interactions. Since positivity is preserved under limits, appropriate
convergence of Euclidean Green’s functions yields positivity after removal of the
cutoffs.

The Euclidean methods lead to mathematically-sound, functional-integral rep-
resentations of the solutions to field theory problems. These representations often
reflect underlying symmetries of the field theories. The Euclidean methods also
apply to theories with fermions, at least for examples with interactions that are
quadratic in the fermions.18 This is the case for free and for “Yukawa type” inter-
actions, used extensively in physics.

These methods have been realized in the two-dimensional and three-dimensional
examples. The explicit integral representations lend themselves to the non-
perturbative analysis of the examples. Basically two methods were developed to
analyze these functional integrals. The correlation inequality method15,11 was suit-
able for a certain class of bosonic Lagrangians. It is based on the fact that in these
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examples the Euclidean Green’s functions are positive and monotonic in the vol-
ume, as is often the case in bosonic classical statistical mechanics. The expansion
method19,20,11 is based on developing convergent expansions in the coupling con-
stant λ. This method applies for coupling constants 0 < λ sufficiently small. These
expansions are not power series (which are known to diverge); however the nth-term
in these expansions is O(λn) as λ→ 0. The nth-term has the form λnGn(λ), where
|Gn(λ)| ≤ O(1) as λ → 0. These expansion methods are not limited to bosonic
Lagrangians, but they are limited to the coupling constant λ being small. The
expansion methods, when applicable, ultimately yield greater qualitative control
over the solutions. In some cases both methods can be used, a great advantage.
We return to these two methods in the following section.

5 The Wightman Axioms and a Mass Gap

The Osterwalder-Schrader construction shows that if a Euclidean functional inte-
gral satisfies reflection positivity and certain bounds on moments, then it yields a
relativistic field theory. Furthermore spectral properties of the Hamiltonian and
the momentum operators in the resulting field theory can be deduced from cluster
properties of moments of the measure that determines the functional integral. Thus
the Euclidean functional integrals became a natural and powerful tool for the study
of the details of the spectrum of the Hamiltonian.

We assume that the Hamiltonian H is positive, 0 ≤ H, and furthermore that
it has the normalized eigenvector Ω with eigenvalue 0, namely HΩ = 0. The
Hamiltonian 0 ≤ H is defined to have a mass gap, if in addition H has no spectrum
in some interval (0,m), where m > 0. The physical consequence of the existence
of a mass gap is that the lightest particle described by the Hamiltonian H has a
mass greater or equal to m. Assuming that the Hamiltonian H and the momentum
operator P commute, we can define the mass operator as the positive square root
M =

√
H2 − P 2. The mass operator labels Lorentz-invariant hyperboloids in the

energy-momentum spectrum, and in a covariant theory, a mass gap (0,m) for H
means there also exists a mass gap (0,m) in the spectrum of M .

Consider the situation where the unit vector Ω is a null vector (ground state)
of H, and any vector χ ∈ H satisfies the bound∣∣〈χ, e−tHχ

〉
− | 〈Ω, χ〉 |2

∣∣ ≤ ‖χ‖2 e−mt , (10)

for all t > 0. This situation is equivalent to the statement that 0 is a simple
eigenvalue of H with eigenvector Ω, and that H has a mass gap of magnitude m.
In fact, we would like a sufficient condition on expectations to ensure the existence
of a mass gap. One needs only to show that there exists a densely defined functional
f(χ) on H with domain D(f) 3 Ω, such that∣∣〈χ, e−tHχ

〉
− | 〈Ω, χ〉 |2

∣∣ ≤ |f(χ)|2 e−mt (11)

holds for all χ ∈ D(f) and all t ≥ 0. It then follows that 0 is a simple eigenvalue of
H, and that a mass gap of magnitude m exists.

Cluster expansions for field theory were developed and applied in the early
1970’s.19,20 This method was originally developed for the two-dimensional examples
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with vectors χ having the form χ = AΩ, where A denotes a monomial functions of
spatially-averaged, time-zero fields and of heat kernels e−sjH , for sj ≥ 0. Denote
this set of A’s by A. Finite linear combinations of vectors χ = AΩ, A ∈ A, are dense
in H. If we insert vectors χ = AΩ into the expectation (11), we obtain a straight-
forward, functional integral representation. The functional f(χ) is a norm on A,
with the property f(AΩ) = ‖A‖a = ‖A∗‖a; it is defined through a complicated
inductively defined construction. We show that for A ∈ A, there exists a constant
m > 0, such that for t ≥ 0,∣∣∣〈Ω, A∗e−tHAΩ

〉
− |〈Ω, AΩ〉|2

∣∣∣ ≤ ‖A‖2a e−mt . (12)

The consequence of these bounds is the proof of the existence of a mass gap, uniform
for equations with the non-linear interaction restricted to a bounded domain. They
also led to the proof of existence and certain regularity properties of the infinite
volume limit.

The cluster expansion methods generate a convergent expansion of expectations
of fields, for a sufficiently small, strictly-positive coupling constant λ. Consider an
expectation in a ϕ4-theory of a product of fields localized in a space-time region O′,
and with the ϕ4-interaction localized in region O containing O′. One performs the
expansion for fixed O, but uses the form of the resulting terms to compare different
O, and to analyze the limit as O ↗ R2. The terms given by the expansion are
expectations with the ϕ4 interaction localized in a region O′′, where O′ ⊂ O′′ ⊂ O.
Furthermore, the magnitude of the sum of terms localized in O′′ is exponentially
small in the size of O′′. This estimate is independent of O, and is sufficiently
strong to allow the comparison of different volumes O. We therefore can estimate
the convergence of the original expectation to a limit as the volume O of interaction
tends to infinity.

With these methods, one could establish the first non-trivial example of the
Wightman axioms.20 Viewed differently, this body of work established the math-
ematical compatibility of quantum field theory with special relativity. While this
work only applied in two-dimensional space-time, it marked the crossing of a ma-
jor set of obstacles barring progress. In this case, it also showed that the non-
perturbative treatment of the equations and their renormalization could be under-
stood at least for these examples in terms of perturbation theory.

6 Three Dimensions

The extension of existence to three-dimensional Minkowski space-time for ϕ =
ϕ(x, y, t) has been studied for the ϕ4 equation, but not for polynomial interactions
of higher degree. Unlike in two space-time dimensions where the scalar field ϕ
is dimensionless, a scalar field in three dimensional space-time has the dimension
length−1/2. Hence the singularity of the interaction compared with the unperturbed
Hamiltonian grows as the degree of the interaction polynomial increases.

The ϕ4
3 equation, with ϕ = ϕ(x, y, t) has the form

ϕ+ ϕ+ λϕ3 = 0 , where ϕ = ϕtt − ϕxx − ϕyy . (13)

8



Here ϕ3 requires a special definition, different from the definition in two-dimensional
space-time. The basic stability bound, establishes that the Hamiltonian in a
bounded volume is bounded from below. This result is difficult to establish in
the three-dimensional case. In order to control stability, we developed a technique
called phase cell localization. This allowed one to analyze degrees of freedom asso-
ciated with a given length scale, and to use these estimates inductively, to analyze
degrees of freedom associated with twice the length scale. Phase cell localization
ideas are related to ideas of Kadanoff and Wilson’s renormalization group. While
the paper establishing this result was finished in 1973,21 it resulted from an evolu-
tion of methods and ideas over about four years.

There are two physical renormalizations responsible for the difficulty in ana-
lyzing the three-dimensional phenomenon. Each corresponds to a mathematical
difficulty that required new techniques to overcome. The first renormalization re-
volves around the Hamiltonian. As in two-dimensions, the normal ordered Hamil-
tonian — in the case that the interaction is confined to a bounded volume — is
a densely defined bilinear form on Fock space. However, unlike two dimensions,
this form does not yield a densely defined operator (as the continuity required by
the Riesz representation theorem is not valid). The mathematical problem comes
down to understanding how to modify the Hamiltonian in order to obtain a dense
operator domain. In fact, to obtain a Hamiltonian operator one must add to the
normal-ordered Hamiltonian three renormalization terms: a mass-renormalization
term (that is quadratic in the time-zero field ϕ and that diverges logarithmically
as a function of a momentum cut-off κ), as well as two vacuum energy renormal-
ization terms that are independent of the field ϕ. One of the constant terms is
linearly divergent in the momentum cut-off κ, while the second constant term is
logarithmically divergent in κ.

The second problem is associated with renormalization of the Hilbert space,
namely renormalization of the state vectors on which the Hamiltonian acts. This
arises because the second-order, linearly-divergent, vacuum-energy renormalization
constant in the Euclidean action S2 for the time interval [0, t] can be written
S2 = tE2 + Λ2 + o(1), as t → ∞. It is the case for constants α2 and β2, that
tE2 ∼ t α2λ

2κ is the linearly divergent vacuum energy renormalization of tH as it
occurs in the heat kernel e−tH , and Λ2 ∼ β2λ

2 lnκ is a logarithmically-divergent re-
mainder that is also time-independent. This remainder gives rise to a multiplicative
renormalization of each wave function by the constant e−Λ2/2 ∼ e−β2λ2 ln κ/2. The
constant Λ2 also forces a change of representation of the canonical commutation
relations, and the limiting Hamiltonian (κ → ∞) acts on a Hilbert space carrying
a representation of the CCR that is unitarily inequivalent to the representation for
free fields, namely the Fock representation.

This is quite different from the two-dimensional theory. The representation of
the Heisenberg relations for the solution to the two-dimensional non-linear wave
equation, restricted to any bounded, space-time region is locally, unitarily equiva-
lent to the representation for the free fields.9 This local equivalence of representa-
tions is known as the “locally Fock” property.

The analysis of these two effects in the three-dimensional theory took consid-
erable work.21 Once that stability was in hand, the generalization of the cluster
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expansion method for small, positive λ followed in the case of three-dimensional
space-time,22 and it led to the first example of a non-trivial Wightman theory on
M3.

7 Digging Deeper

The focus of CQFT was and remains not only to establish existence, but also to
develop methods aimed at establishing quantitative and qualitative properties of
the particular examples. Thus constructive quantum field theorists did not only
attempt to justify expected phenomena, but they also aimed at the broader explo-
ration of physics at a fundamental level — consistent with historical precedents of
mathematical integrity. This work also led to establishing physical properties of
these examples, including many features of their particle spectrum, the description
of scattering in these examples, and the qualitative behavior of the examples as a
function of the coupling constants. In this section, we mention only a few of the
many phenomena that have captured our imaginations in the above field theories,
and about which mathematically complete results have been established.

7.1 Particles and Scattering

An initial question to answer concerns whether these quantum field have particle
states and whether the solutions to the field theory describe scattering of these
particles. There are two standard text-book methods to recover scattering data
from a field theory: the theory of Lehmann, Symanzik, and Zimmermann using
Green’s functions to construct S-matrix elements, and the alternate approach of
Haag and Ruelle, based on a construction of the wave operator in the Hilbert space.
Both these methods require as an hypothesis, the existence of an isolated one-
particle mass hyperboloid in the energy-momentum spectrum — or equivalently
the existence of an isolated eigenvalue m > 0 for the mass operator M . This
requirement of an isolated eigenvalue is more subtle than the existence of a mass
gap. It entails both a lower gap and an upper gap in the spectrum of M , as well as
the existence of the eigenvalue m. If 0 and m > 0 are eigenvalues of M , one expects
continuous spectrum on the interval [2m,∞), and possible additional eigenvalues
in the interval (m, 2m) in the case of an attractive interaction. These eigenvalues
can be interpreted as the masses of particles that are bound states of two mass-m
particles, with the lowering of the total mass attributed to the binding energy.

In the λP(ϕ)2 examples, with small 0 < λ, this picture has been verified. The
first step is to prove the existence of an eigenvalue m which one can interpret as
the mass of an isolated particle. A refinement of the cluster expansion techniques
leads to that result.20 Further analysis shows that λϕ4 equations are repulsive and
they do not have bound states,23 while λϕ6 equations do have a bound state.24

7.2 Phase Transitions and Non-Uniqueness

A second qualitative phenomenon occurs for the λϕ4 equation with λ large, namely
non-uniqueness of the infinite volume limit. Associated with this is the non-
uniqueness of the Euclidean Green’s functions, of the solutions to the equation
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(3), and of the ground state of H. In physics, this non-uniqueness is known as the
existence of a phase transition or as degeneracy of the ground state. Phase transi-
tions often occur along with the breaking of a symmetry, in this case breaking of
the ϕ → −ϕ symmetry of the Lagrangian. There are two successful methods to
study this phenomenon. One approach is to develop a new cluster expansion that is
valid in the region λ� 1. One can change the parameterization of this equation,25

by varying the mass implicit in the definition of the constant cκ in (6), and thereby
show that (3) for λ� 1 is equivalent to an equation

ϕ− ϕ+ λϕ3 = 0 , (14)

with a negative linear term and with 0 < λ� 1. This parameterization illustrates
the two semi-classical minima of the polynomial 1

4λϕ
4 − 1

2ϕ
2. One can analyze

the equation by correlation inequalities.26 One can then establish a different sort of
convergent cluster expansion in the parameter λ.27 One can analyze the problem
by cluster expansions. This expansion shows that one can construct two distinct,
clustering ground states Ω±, corresponding to the expectation 〈Ω±, ϕΩ±〉 ∼ ±λ−1/2

of ϕ lying near one of the two minima of the quartic interaction energy density.
Furthermore, there is a superselection rule so that for bounded A the different
vacua do not mix, 〈Ω+, AΩ−〉 = 0. Thus one can decompose the theory into
individual examples with a unique vacuum. The cluster expansion selects one of
these vacuum states by imposing the value of the field on the boundary of a large
box, before taking the infinite volume limit.

7.3 Zero Mass and Twists

Super-symmetry is an additional algebraic structure in quantum boson-fermion
theories. The mathematical introduction of fermions requires the existence of a
Z2-grading Γ, namely a self-adjoint, root of unity on H. The eigenspaces of Γ
are defined to be bosonic or fermionic states, respectively. The grading acts on
linear transformations by B → BΓ = ΓBΓ, and modulo questions of domain, every
linear transformation can be decomposed uniquely as a sum of two parts that are
even (bosonic) and odd (fermionic) under this action. Super-symmetry revolves
about the existence of a self-adjoint fermionic operator Q that is the square root
of H = Q2. This charge Q has a geometric interpretation, as one can define the
differential given by the graded commutator dB = [Q,B]Γ = QB − BΓQ. Such a
structure also arises in non-commutative geometry.28

Super-symmetric examples have been extensively studied in constructive quan-
tum field theory, especially in 2-dimensional cylindrical space-times.29,30 In these
and other cases of two-dimensional constructive field theory, one studies interacting
Hamiltonians that are perturbations of free, massive, super-symmetric fields. One
routinely introduces a mass, since in two dimensions the massless, scalar boson field
is singular.1 However, very interesting Lagrangians arise for which a family of super-
symmetric interactions (with parameter 0 ≤ λ ≤ 1) appear to share a common Lie
group of symmetries of H, and for which the λ = 0 endpoint is free. However,
in these cases, the Lie symmetry and super-symmetry appear incompatible with
an unperturbed massive theory. This forces the question of how to deal with the
two-dimsional, massless, bosonic interaction within the framework of constructive
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quantum field theory. We have discussed twist fields, namely multivalued fields
on cylindrical space-times that allow massless interactions of a two-dimensional
sort.31,32,33,34,35

Fundamental to the notion of quantum field is the assumption that the abelian
group of space and time translations of S1 × R has a unitary representation on H
generated by the self-adjoint, commuting operators P and H, where P is the mo-
mentum. This translation group eix′P+it′H implements the space-time translations
of fields, so for the bosonic field with components labelled by i,

ϕi(x− x′, t+ t′) = eix′P+it′Hϕi(x, t)e−ix′P−it′H , (15)

while for the fermionic field with components ψα,i,

ψα,i(x− x′, t+ t′) = eix′P+it′Hψα,i(x, t)e−ix′P−it′H . (16)

The unitary twist group eiθJ has a generator J commuting with H and P , and
satisfies

eiθJϕi(x, t)e−iθJ = eiθΩb
i ϕi(x, t) . (17)

The fermionic time-zero field ψα,i satisfies

eiθJψα,i(x, t)e−iθJ = eiθΩf
α,i ψα,i(x, t) . (18)

The twisting angles Ω = {Ωb
i , Ωf

α,i} are given constants that characterize the twist
generator J , up to an additive constant ĉ/2, chosen so that ±J have the same
spectrum. Then the zero-particle vector Ω0 ∈ H satisfies

J Ω0 =
1
2
ĉΩ0 , with ĉ =

n∑
i=1

(
Ωf

2, i − Ωf
1, i

)
. (19)

A twist quantum field on a circle S1 is a field for which these two groups are
related. If the circle has length `, then

ϕi(x+ `, t) = eiχb
i ϕi(x, t) , (20)

and

ψα,i(x+ `, t) = eiχf
α,i ψα,i(x, t) , (21)

for all x ∈ S1 and t ∈ R. The set of twisting angles χ = {χb
i , χ

f
α,i} is taken

so that no twisting phase equals one. In case the superpotential V satisfies the
quasi-homogenity condition

V (z) =
n∑

i=1

Ωizi
∂

∂zi
V (z) , (22)

we choose

{χb
i , χ

f
α,i} = {Ωb

iφ, Ωf
α,iφ} . (23)
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7.4 Twists Break Super-symmetry

The twist fields act in many ways like massive fields, and in fact the Fourier mo-
menta are shifted from zero by the amount χ/`, choosing the χ appropriate for each
component. Thus twist fields are not infra-red singular at k = 0 like periodic fields,
and twist fields can yield translation-invariant, twist-invariant Hamiltonians. How-
ever, twist fields are not totally compatible with super-symmetry. On the other
hand, one finds that for a complex interaction where one expects N = 2 super-
symmetry, one can preserve half the supercharges. Furthermore, one can estimate
the errors in the full super-symmetry algebra. One expect in a periodic example
that there are self-adjoint charges Q1 and Q2 such that

Q2
1 = H + P , and Q2

2 = H − P . (24)

In fact, we come closest to this situation when H has the form

H = H0 +
∫ `

0

HI(x)dx , (25)

where

HI(x) =
n∑

j=1

|Vj(ϕ(x))|2

+
n∑

i, j=1

ψi,1(x)ψj,2(x)∗Vij(ϕ(x))

+
n∑

i, j=1

ψi,2(x)ψj,1(x)∗Vij(ϕ(x))∗ .

(26)

Then there is an operator Q1 invariant under translations and twists, and an oper-
ator Q2 such that

Q2
1 = H + P , and Q2

2 = H − P + φR . (27)

Here R is an operator independent of λ, and satisfies for some constants 0 < ε,

±εR ≤ H + I . (28)

Such an estimate allows us to define and study the twisted partition function

ZV = TrH
(
Γe−iθJ−iσP−βH

)
. (29)

Amazingly, this partition function ZV , which is a geometric invariant,28,36,37 can
be computed. It displays a hidden modular symmetry, and it can be expressed in
terms of elementary theta functions. In fact ZV depends on V only through its
universality class determined by the numbers {Ωi}.33 In terms of τ = (σ + iβ)/`

ZV (τ, θ, φ) = zĉ/2
n∏

i=i

ϑ1(τ, (1− Ωi) (θ − φτ))
ϑ1(τ,Ωi (θ − φτ))

. (30)
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8 For the Millennium: Gauge Theory in Four Dimensions

Relations between field theory and geometry also arise both in gauge theories.
The field F is the curvature of a connection A, and the classical equations for F
transform covariantly under a change of coordinates (change of gauge). Classical
Yang-Mills fields take values in the Lie algebra of the gauge group. Despite the far-
reaching success of constructive quantum field theory, the original puzzle explained
in §1 remains unresolved. Can one find a non-trivial, non-linear quantum field in
four-dimensional space-time?

The most promising candidate for a non-trivial and physically-interesting field
theory on Minkowski 4-space is the Yang-Mills theory with an SU(2) gauge group.
The Yang-Mills field F is defined in terms of a Lie-algebra valued connection A,

F = dA+A ∧A . (31)

The Euclidean Yang-Mills Lagrangian is ‖F‖2, where the squared norm includes
a trace over SU(2) and an integral over space-time. Perturbation theory involves
the study of the interaction in powers of the non-linearity arising from A ∧ A,
and it indicates that this Yang-Mills example is asymptotically free. The physical
interaction becomes weaker at high energy, and for this reason, the objections from
perturbation theory suggesting the triviality of ϕ4

4 do not carry over to Yang-Mills
interactions in four-space. Furthermore, physicists expect that this example will
have a mass gap. Therefore one can pose the following:

Problem. Prove the existence of a quantum field theory on M4 satisfying the
Euclidean axioms for gauge theories, agreeing with SU(2)-Yang-Mills physics texts
in lowest order perturbation theory in g, and possessing a gap in the mass spectrum.

This problem has been attacked by a number of people, leading to substan-
tial partial progress.38,39 One can envision the positive future answer to the ques-
tion of the existence of an asymptotically-free, four-dimensional gauge theory on
a cylindrical space-time, although the infra-red (infinite-volume) limit still seems
beyond grasp. The non-abelian nature of the gauge group means that the curvature
F = dA+A ∧A will lead to a quartic term in the energy. Such a potential might,
in fact, rise rapidly enough to confine the wave-function. Feynman, toward the end
of his life believed that he understood this.
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