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We combine infinite dimensional analysis (in particular a priori
estimates and twist positivity) with classical geometric structures,
supersymmetry, and noncommutative geometry. We establish the
existence of a family of examples of two-dimensional, twist quan-
tum fields. We evaluate the elliptic genus in these examples. We
demonstrate a hidden SL(2, �) symmetry of the elliptic genus, as
suggested by Witten.

D eep and surprising relations between physics and geom-
etry emerged from the attempt to formulate an appro-

priate mathematical framework to describe physics. Supersym-
metry and quantized loops are basic ingredients of proposed
theories combining quantum mechanics with general relativity.
String theory was born in an effort to regularize the otherwise
non-renormalizable aspects of gravitation as a quantum field.

The present paper focuses on the mathematics underlying a
formulation of the fundamental laws of physics, but within a re-
stricted context. We investigate infrared and ultraviolet conver-
gence in certain nonlinear quantum field theories. Our nonper-
turbative analysis establishes the existence of solutions to the
field equations, without being able to express the solutions in
closed form. It also allows us to evaluate certain geometric in-
variants in the resulting field theory. We describe the results
contained in a series of related papers (1–6).

Time-zero bosonic fields ϕ�x� on a circle are called loops.
The fields we consider are (multi-valued) maps from a circle
(of period `) into a target �n. Transporting x once around the
circle yields the original value of ϕ multiplied by a phase eiχ,
namely ϕ�x+ `� = eiχ ϕ�x�. The angle χ characterizes the field
ϕ. In what follows we study a family of fields with χ = �φ,
where � is a strictly positive, diagonal matrix, and where φ is
a real parameter. We call ϕ�x� a “twist field” depending on
φ; it reduces to a periodic field as φ → 0. Twist fields have
an intrinsic interest. In addition, the parameter φ provides an
infrared regularization; in the next section we also introduce an
ultraviolet regularization.

A space of functionals of fields ϕ is called a “loop space.”
Our loop space will be a space of quantum mechanical states,
so it will also be a Hilbert space. To study analysis and geometry
on loop space, we desire to have an exterior derivative D that
acts on loop space. Some time ago, Witten suggested that natu-
ral candidates for D arise in supersymmetric physics. We study
some such examples, where D has the structure D = D0 + DI ,
with D0 an infinite-dimensional generalization of the de Rham
derivative, and with DI a connection determined by a holomor-
phic potential function V . In this context, Dirac fields are one-
forms over loop space. The Fock space ( is the exterior algebra
over loop space defined by D0, and it inherits a natural Hilbert
space structure.

In our examples, D arises as a densely defined quadratic form.
After regularization, D and D∗ also determine densely defined
operators, so for each D we introduce a “supercharge” opera-
tor Q on ( as the (self-adjoint) closure of Q = D + D∗. This
supercharge Q is a Dirac operator on loop space, and is a gen-
erator of supersymmetry. The theories we study possess partial
supersymmetry. The nontrivial twist χ has the effect that we ob-
tain only half the number of invariant charges Q from what one
expects when χ = 0.

Each operator Q that we consider is also invariant under a
U�1� 3 U�1� group of translations and twists. We use this Lie

symmetry to evaluate a fundamental geometric invariant for the
dynamics on loop space, namely the elliptic genus. We justify a
formula for the genus as a ratio of theta functions. The ellip-
tic genus fits into the framework of noncommutative geometry,
and it has the interpretation as an equivariant index of the su-
percharge Q. The elliptic genus is constant on each universality
class of potentials V defined in 1.13. Furthermore, as a function
of φ and the two parameters of the symmetry group, the ellip-
tic genus displays an SL�2;�� symmetry. Because this symmetry
appears, even though the underlying quantum field theory is not
conformal, we call the SL�2;�� symmetry “hidden.”

1. Twist Constructive Quantum Field Theory
In constructive quantum field theory, the time-zero fields are
operator-valued distributions on a Fock–Hilbert space (. We
study scalar fields ϕ�x� with n components ϕi�x�, where 1 �
i � n, and a Dirac field ψ�x� with 2n components ψα; i�x�,
where α = 1; 2. The space ( = (b ⊗ (f is a tensor prod-
uct of a bosonic Fock space (b = exp⊗s �+� with a fermionic
Fock space (f = exp∧�+�. The one-particle space + is + =⊕n

i=1 L
2�S1; dx� ⊕ L2�S1; dx�.

A unitary group eitH on ( generated by a self-adjoint Hamil-
tonian H determines the time evolution,

ϕ�x; t� = eitH ϕ�x� e−itH; [1.1]

and

ψ�x; t� = eitH ψ�x� e−itH: [1.2]

We also denote the bosonic conjugate time-zero field by π�x�,
π�x� = �iH;ϕ�x�∗�: [1.3]

The self-adjoint momentum operator P commutes with H and
implements spatial translations. For example,

e−iσPϕ�x�eiσP = ϕ�x+ σ�; [1.4]

with similar action on π�x� and ψ�x�. Furthermore, the unitary
twist group eiθJ has a generator J commuting with H and P . For
all x � S1

eiθJϕi�x�e−iθJ = eiθ�
b
i ϕi�x�; [1.5]

so consequently

eiθJπi�x�e−iθJ = e−iθ�
b
i πi�x�; [1.6]

and the fermionic field satisfies

eiθJψα;i�x�e−iθJ = eiθ�
f
α;i ψα;i�x�: [1.7]

The twisting angles � = ��bi ; �fα;i� are given constants that
characterize the twist generator J, up to an additive constant.
We choose this additive constant ĉ/2 so that 5J have the same
spectrum. Then the zero-particle vector �0 � ( satisfies

J �0 =
1
2
ĉ �0; with ĉ =

n∑
i=1

(
�
f
2; i −�f1; i

)
: [1.8]
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Definition 1.1: Twist quantum fields on a circle S1 of length `
are quantum fields of the type above, such that the initial data
�ϕi�x�; πi�x�; ψα; i�x�� satisfy

ϕi�x+ `� = eiχ
b
i ϕi�x�; πi�x+ `� = e−iχ

b
i πi�x�; [1.9]

and

ψα;i�x+ `� = eiχ
f
α;i ψα;i�x�; [1.10]

for all x � S1. The set of twisting angles χ = �χbi ; χfα;i� is taken
so that no twisting phase equals one,

eiχ
b
i 6= 1; and eiχ

f
α; i 6= 1; for all i; α: [1.11]

We study twist fields from two complementary points of view:
as canonical quantum theories or via probability theories. Such
interplay is standard in constructive quantum field theory with-
out twists. The canonical quantum theory involves the direct
study of linear transformations on Hilbert space; it is the tradi-
tional approach to quantum theory. It leads to harmonic analy-
sis and nonlinear hyperbolic equations. The quantum fields sat-
isfy systems of nonlinear equations with canonical constraints on
their initial data. On the other hand, the probability approach
relies on expectations over a classical configuration space, and
a fundamental representation of expectations of the heat kernel
of the Hamiltonian as a functional integral. This approach for
the bosonic fields involves the definition of non-Gaussian, quasi-
invariant measures on the space of functionals 3′�� � of classi-
cal fields on a torus. The inclusion of fermionic fields requires
the extension of the classical space to include a tensor product
with an infinite dimensional Grassmann algebra equipped with a
Gaussian functional that defines a Gaussian integral. These two
points of view are unified through the “Feynman–Kac represen-
tation,” which shows the equality of moments of the functional
integral as expectations of time-ordered products of fields.

The nonlinearity of the systems we study is determined by a
holomorphic polynomial V x �n 7→ �, called the superpotential.
Denote the degree of this polynomial by

ñ = degree�V �; and we assume ñ � 2: [1.12]

We have shown elsewhere the existence of solutions to these
equations under certain assumptions on V �z� and on the twist-
ing angles that we detail below. These assumptions include the
fact that V �z� is a holomorphic, quasihomogeneous polynomial
of degree at least two. In other words, there exist n rational
numbers �i called weights, with �i � �0; 1

2 �, and such that

V �z� =
n∑
i=1

�i zi Vi�z�; [1.13]

where Vi�z� = ∂V �z�/∂zi. Each set of weights ��i� determines a
universality class of potentials V . In these examples, the Hamil-
tonian H = H�V � takes the form

H = H0 +
∫ `

0
HI�x�dx; [1.14]

where H0 = H�0� denotes the free Hamiltonian, and

HI�x� =
n∑
j=1

∣∣Vj�ϕ�x��∣∣2
+

n∑
i; j=1

ψi;1�x�ψj;2�x�∗Vij�ϕ�x��

+
n∑

i; j=1

ψi;2�x�ψj;1�x�∗Vij�ϕ�x��∗: [1.15]

The phrase “Wess–Zumino equations” or sometimes “Landau–
Ginzburg equations” identifies these examples in the literature.
For cubic V , the equations reduce to the coupling of a nonlinear
boson field to the Dirac field by a Yukawa interaction, so oc-
casionally these equations are also called “generalized Yukawa”
equations.

Denote the fermion number operator on (f by Nf , and let
0 = �−I�Nf denote a �2-grading on (. As 0 commutes with
H0, it follows from 1.15 that 0 commutes with H�V �. We re-
quire above that the Hamiltonian is invariant under both the
translation group e−iσP and the twist group eiθJ . The free Hamil-
tonian H0 and the first term in 1.15 have this property as long
as the bosonic twisting angles χb and the bosonic twisting pa-
rameters �b in 1.5 are both proportional to the weights ��i�
in 1.13. We obtain all possible twisting phases by considering
χb and �b modulo 2π. We choose a normalization for θ such
that the bosonic parameters exactly equal the weights. Thus we
choose

�bi = �i and χbi = �iφ; [1.16]

and for convenience we restrict the parameter φ to lie in the
interval φ � �0; π�.

The boson–fermion interaction occurs in the two last terms
in 1.15. We want the Hamiltonian to be invariant both un-
der the J-twist group and the translation group. If we have
eiθJHI�x�e−iθJ = HI�x� (for all θ) and HI�x + `� = HI�x�
(for all x), then it follows that �J;HI� = �P;HI� = 0. Inserting
1.5–1.7 and 1.16 into 1.15 shows that J-twist invariance requires

�
f
1; i −�f2; j + 1−�i −�j � 2π�; [1.17]

for all 1 � i; j � n. Similarly substituting 1.9 and 1.10 and 1.16
into 1.15, translation invariance requires that

χ
f
1; i − χf2; j +φ−�iφ−�jφ � 2π�; [1.18]

for all 1 � i; j � n. Because we may also reduce χf and �f

modulo 2π, the right sides of the constraints 1.17 and 1.18 may
be taken to equal zero. The solution to these constraints is

�
f
1; i = �i −

1
2
+ ε; �

f
2; i = −�i +

1
2
+ ε; [1.19]

and

χ
f
α; i = �fα; iφ+ µ; [1.20]

where ε and µ are real parameters that may depend on φ, but
are independent of i and α. The normalization constant ĉ de-
fined in 1.8 is independent of ε and µ, and it equals

ĉ =
n∑
i=1

�1− 2�i� : [1.21]

The choices above yield a translation-invariant Hamiltonian,
as well as one invariant under J-twists. A further restriction
on the possible values of µ and ε allows us also to define a
translation-invariant supercharge Q. The two possibilities are
ε = 5 1

2 , both with µ = 0, leading to self-adjoint supercharge
operators Q+ or Q− that anticommute with 0. These restric-
tions are necessary even in case V = 0. They correspond to the
occurrence of ψ1;iπi or ψ2;iπ

∗
i in Q5, respectively. The super-

symmetry relations are

Q2
+ = H + P or Q2

− = H − P: [1.22]

No single choice of ε leads to both relations (1.22), so the χ-twist
cuts in half the number of translation-invariant supercharges. It
turns out that each charge Q5 also commutes with a respective
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J-twist J5. We study the case ε = 1
2 , and call this supercharge

Q = Q0 + QI�V �, with Q0 independent of V and with QI�V �
linear in V . The J-twist parameters and the χ-angles are in this
case†

��bi ; �f1;i; �f2;i� = ��i; �i; 1−�i�; and

�χbi ; χf1;i; χf2;i� = ��iφ; �iφ; �1−�i�φ�: [1.23]

We require an analytic condition on the polynomial V �z�, to
ensure that the spectrum of the Hamiltonian 1.14 is discrete and
that the eigenvalues increase sufficiently rapidly. We call this an
elliptic bound, and assume that given 0 + ε, there exists M + :
such that the function V satisfies

�∂αV � � ε �∂V �2 +M; and �z�2 + �V � �M (�∂V �2 + 1
)
: [1.24]

Here ∂αV denotes any multi-derivative of V , while �z� denotes
the magnitude of z, and �∂V �2 = ∑n

i=1 �∂V/∂zi�2 is the squared
magnitude of the gradient of V . We begin by stating our stan-
dard hypotheses and the fundamental existence result.

Definition 1.2: The Standard Hypotheses (SH). The potential V
is a holomorphic, quasihomogeneous polynomial 1.12–1.13, satis-
fying the elliptic bound 1.24 . The relations 1.23 for J-twists and for
χ-twists hold, yielding 1.21 .

Theorem 1.3. Assume SH. There is a self-adjoint Q =
Q�V � commuting with the two-parameter unitary group e−iσP−iθJ ,
anticommuting with 0, and such that H = Q2 − P . The Hamilto-
nian H�V � is bounded from below, and the heat kernel e−βH is
trace class for all β , 0.

2. The Elliptic Genus and Noncommutative Geometry
Definition 2.1: The elliptic genus is defined as the partition func-

tion

ZV = Tr(

(
0e−iθJ−iσP−βH

)
: [2.1]

We investigate the elliptic genus by representing it as a func-
tional integral, as embodied in the following:

Theorem 2.2. Assume SH. Then there exists a positive, non-
Gaussian, and countably additive Borel measure dµ on the space
3′ = 3′�� 2� of distributions on the 2-torus, and an integrable,
regularized Fredholm determinant det3 arising from the boson–
fermion interaction, such that

ZV =
∫

3′
det3 dµ: [2.2]

The remarkable positivity of the measure dµ is a feature of
the bosonic theory; we call it twist positivity (3). We recognized
this property and established it for untwisted fields in ref. 3, we
generalized this to twist fields in ref. 5, and we abstract this prop-
erty in a forthcoming joint work with O. Grandjean and J. Tyson.
The positivity of dµ arises from the fact that the measure dµ has
the structure dµ = e−Sdµ0, where S is a measurable real action
functional, and where dµ0 is a Gaussian measure. In fact dµ0 is
a Gaussian with mean zero, with covariance �−14 �−1, and with
an appropriate normalization. Here 14 is the twisted Laplacian
on the torus � with periods ` and β; the Laplacian acts on the
vector bundle

⊕n
i=1 L

2�� 2�, being uniquely determined by its
action on the domain of smooth, n-component functions f �x; t�
satisfying the twist relations,

fi�x; t + β� = e−i�iθfi�x+ σ; t�; [2.3]

†While earlier methods required a massive bosonic free Hamiltonian, see for example
(7–9), twist fields allow a massless one. This provides a big advantage in preserving
other symmetries. Even though twists partially break supersymmetry, our computation
of invariants requires only one charge, but not both. It is a remarkable feature of these
examples that they do not require infinite “renormalization,” as long as the twist
relations 1.23 hold. Natural cancellations of divergences occur between the bosonic
and the fermionic degrees of freedom.

and

fi�x+ `; t� = e−i�iφfi�x; t�: [2.4]

The functions e�k;E;j�i �x; t� = δijeikx+iEt+ikσt/β, in the case that
`k � 2π� − �jφ, that βE � 2π� − �jθ, and that 1 � j � n,
form an orthogonal basis of eigenfunctions for 1τ.

Another aspect of our work involves understanding the inter-
action introduced by non-zero potentials V , yielding the action
S in the measure dµ and the regularized Fredholm determinant
det3 in the representation 2.2. We need to identify and study
the cancellations that occur in this representation and in the
derivative of this representation with respect to some parame-
ter. Some of these cancellations occur directly in the heat kernel
itself: these are renormalization cancellations and can be han-
dled by extensions of known methods. Other cancellations are
more delicate and only occur in estimates on differences of par-
tition functions. We begin with some basic operator estimates.
Let N denote the total number operator on (.

Theorem 2.3. Assume SH. Then there exist constants M1 =
M1�V;φ�; M2 = M2�V;φ�; and M = M�β; V;φ� that are inde-
pendent of j; independent of λ � �0; 1�; and such that

N +H1/2
0 �M1Hj�λV � +M2; [2.5]

and

Tr(

(
e−βHj�λV �

)
�M: [2.6]

Also, for fixed V , fixed λ � �0; 1�; fixed τ � �; fixed θ � �; and
fixed φ � �0; π�;

lim
j→:

∣∣∣ ZλV
j − ZλV

∣∣∣ = 0: [2.7]

In ref. 6, we show that this estimate results in a priori estimates
on the operators P and J. For a fixed V and fixed φ � �0; π�,
there exist constants M1 and M2 depending on φ, such that
5P � M1Hj +M2 and 5J � M1Hj +M2. It follows that Qj ,
defined as the regularized Q, can be estimated in terms of Hj ,
and Qj e

−βHj is trace class, uniformly in j, for each β , 0. The
bounds satisfied by Qj and the convergence of ZλV

j as j → :,
lead to the analyticity of the elliptic genus. Let � denote the
interior of the upper-half plane. Define τ in terms of the space-
time parameters σ and β to be

τ = σ + iβ
`

� �: [2.8]

Theorem 2.4 (6). Assume SH. Then, for fixed real θ and φ,
the elliptic genus ZV �τ; θ;φ� defined in (2.1) is a holomorphic
function of τ � �.

The elliptic genus is one member in a family of K-theory in-
variants arising from non-commutative geometry (entire cyclic
cohomology), as explained in §IX of ref. 1 and based on ref.
10. It is the equivariant index of a Dirac operator Q on loop
space. The elliptic genus, however, is only one invariant from
a whole family of invariants, resulting from pairing the JLO-
cocycle (11). Therefore, it may be possible, within the frame-
work of the Wess–Zumino examples that we study here, to find
closed form expressions for some other invariants given in ref. 1.
We formulated various representations for such invariants in
refs. 2 and 4, and these might be useful in computation.

As a computational tool, we wish to know under what hy-
potheses the partition function ZVλ is independent of a param-
eter λ in the potential function Vλ�z�. The answer to this ques-
tion depends both on analytic as well as on geometric data. The
geometric requirement is satisfied if one symmetry group eiθJ

(with fixed �) is applicable to the family Vλ of potentials that
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we consider. Complementary to that, the analytic input involves
whether the function

λ 7→ ZVλ ; [2.9]

is a priori continuous—or even differentiable—in λ. We would
like precise conditions under which ZVλ is differentiable, and for
which the derivative equals the expression obtained by exchang-
ing the order of differentiation and taking traces.

In this paper, we study the case Vλ = λV , so variation of
λ does not change the quasihomogeneous weights of V . As a
consequence, if 0e−iσP−iθJ commutes with H�λV � for one value
of λ � �0; 1�, it commutes for all λ � �0; 1�. Thus we study

ZλV = Tr(

(
0e−iθJ−iσP−βH�λV �

)
: [2.10]

For V = 0, the heat kernel e−βH0 is also trace class, on ac-
count of the non-zero twisting parameter φ, and we choose in J
the twisting parameters associated with V . We let the partition
function Z0 have an implicit dependence on V , brought about
through the choice that J be appropriate for the associated fam-
ily H�λV �.

We approach the study of the properties of ZλV as a function
of λ by introducing an approximating family of regularized par-
tition functions ZλVj . We obtain this family by replacing QI�V �
by QI;j�V �, and Q�V � by Qj�V � = Q0+QI;j�V �, leading to a reg-
ularized Hamiltonian Hj�V � = Qj�V �2 − P . The approximating
operators satisfy certain basic a priori estimates, some of which
are uniform in j, while others are not. At a technical level, the
family of approximations we use involves mollifiers with “slow
decrease at infinity,” as we introduced in ref. 12 to study a re-
lated problem, and as implemented in ref. 6 for this problem.

We write the elliptic genus ZλV as a function of the invariant
charge Q�λV �, and likewise we write ZλV

j as a function of Qj�V �,
which is also invariant. We establish certain properties of ZλV

j

depending on estimates that are not uniform in j.
Theorem 2.5 (6). Assume SH. Then, the map

λ 7→ ZλV
j �τ; θ;φ� [2.11]

is differentiable in λ for λ � �0; 1�; and the order of λ-
differentiation and the trace in 2.1 can be interchanged.

Furthermore, with ñ given in 1.12 and with 0 � α + 2/�ñ− 1�;
there exists a constant M = M�α;β; j; V;φ� such that for λ �
�0; 1�; ∣∣∣ZλV

j − Z0
∣∣∣ �M λα: [2.12]

These two analytic results lie at the very heart of evaluating
the elliptic genus, as they establish the existence of a homotopy
between the genus ZVj and Z0. Generically the genus ZλV

j is
piecewise constant in λ, but not globally constant. We show that
ZλVj is differentiable on the open interval 0 + λ, and we evaluate
the derivative by showing the existence of and identifying the
limit

∂

∂λ
ZλV
j = lim

λ′→λ

ZλV
j − Zλ′V

j

λ− λ′
= − Tr(

(
0Qj�λV �QI;j�V � e−iθJ−iσP−βHj�V �

)
− Tr(

(
0QI;j�V �Qj�λV �e−iθJ−iσP−βHj�V �

)
: [2.13]

We can then use a priori bounds on Qj�λV �, QI;j�V �, and
Hj�λV � to show that ∂ZλV

j /∂λ = 0, for λ � �0; 1�. An impor-
tant fact is that we can use cyclicity of the trace Tr( �AB� =
Tr( �BA�, in the case that A is trace class, namely �A�1 + :,
and that B is bounded. The trace norm �A�1 is the Schatten
norm �A�p with p = 1, defined by �A�pp = Tr(��A∗A�p/2� for

p � 1. In case �A�p + :, then �A� = lim infp′�p �A�p′ . These
norms satisfy Hölder’s inequality with �A�: = �A� (see ref. 13).

The behavior of ZλVj at the endpoint λ= 0 is trickier. The
second statement of the theorem claims that ZλV

j is Hölder con-
tinuous at the origin, with an exponent that may be arbitrarily
small for potentials V of large degree. In ref. 6, we prove the
identity

ZλVj −Z0=−βλ2
∫ 1

0
Tr(

(
0e−iσP−iθJe−sβHj�λV �/2

3 QI;j�V �e−�1−s�H0QI;j�V �e−sβHj�λV �/2
)
ds: [2.14]

Choose α so that 0+α�ñ−1�/2+ 1. We also establish in ref. 6
the existence of M3=M3�α;β;j;V;φ� such that∥∥e−sβHj�λV �/4QI;j�V �e−�1−s�H0/4

∥∥
�M3λ

−1+α/2 s−1/2+α/4 �1−s�−α�ñ−1�/4: [2.15]

Although this bound is not uniform in j, it serves our purpose.
We estimate 2.14 using

∣∣ Tr( �A�
∣∣� �A�1. We then apply a

Hölder inequality in the Schatten norms. We conclude that there
is a constant M4=M4�α;β;j;V;φ� such that∣∣ZλVj −Z0

∣∣
�βM2

3λ
α

∫ 1

0
s−1+α/2�1−s�−α�ñ−1�/2

3
(
Tr(

(
e−βHj�λV �/4

))s (
Tr(

(
e−βH0/4

))1−s
ds

�M4λ
α; [2.16]

establishing the Hölder continuity of ZλV
j at λ= 0.

Combining the vanishing of ∂ZλVj /∂λ for λ, 0, with conti-
nuity at λ= 0 (where ZλVj is independent of j), we infer the
following from Theorem 2.4.

Theorem 2.6. Assume SH. Then the map λ 7→ZλV is constant
for λ� �0;1�.
3. Hidden Symmetry
In a seminal paper (14), Witten suggested that one could cal-
culate the elliptic genus of these examples in closed form. He
gave a proposed formula (for φ = 0) based on a free field com-
putation and pointed out why one expects that answer. Kawai,
Yamada, and Yang (15) elaborated on the algebraic aspects Wit-
ten’s work and made contact with related proposals of Vafa (16).
These insights require further elaboration, as the representation
2.1 is ill-defined if both V = 0 and φ = 0. We prove here the
representation for the elliptic genus ZV for φ � �0; π�, relying
on the analysis above to reduce the problem to the case V = 0,
and to a calculation carried out in ref. 6, similar to Witten’s
consideration for φ = 0.

Define the variables

q = e2πiτ; so �q� + 1; y = eiθ; [3.1]

so �y� = 1, and

z = eiφτ; so �z� + 1: [3.2]

Consider partition functions as functions of τ, θ, and φ, related
to q, y, and z as above. The Jacobi theta function of the first
kind ϑ1�τ; θ�, defined for τ � � and for θ � �, is given by

ϑ1�τ; θ� = iq
1
8

(
y−

1
2 − y 1

2

)
3

:∏
n=1

�1− qn��1− qny��1− qny−1�: [3.3]

This function is odd in the second variable, namely ϑ1�τ; θ� =
−ϑ1�τ;−θ�. We use the notation in §21.3 of Whittaker and Wat-
son (17).
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Theorem 3.1 (6). Assume SH. Then the elliptic genus ZV de-
pends on V only through its universality class, as determined by
the weights ��i�, and it equals

ZV �τ; θ;φ� = zĉ/2
n∏
i=i

ϑ1�τ; �1−�i� �θ−φτ��
ϑ1�τ;�i �θ−φτ��

: [3.4]

Remark: Theorem 3.1 shows that ZV �τ; θ;φ� extends to
a holomorphic function for τ � �, θ � �, and φ � �. If
a; b; c; d � �, and ad − bc = 1, then

(
a
c

b
d

)
� SL�2;��. Let

τ′ = aτ + b
cτ + d ; θ′ = θ

cτ + d ; [3.5]

and

φ′ = φτ

aτ + b : [3.6]

The analytic continuation of the partition function ZV �τ; θ;φ�
obeys the transformation law

ZV �τ′; θ′; φ′� = e2πi� ĉ8 �
(
c�θ−φτ�2
cτ+d

)
ZV �τ; θ;φ�: [3.7]

One obtains limiting values from the representation 3.4 as the
parameters φ, θ, or q vanish; these limits are not uniform and
do not commute. Define the integer-valued index of the self-
adjoint operator Q (restricted to the subspace H = 0 and with
respect to the grading 0) as the difference in the dimension of
the kernel and the dimension of the cokernel of Q as a map
from the +1 eigenspace of 0 to the −1 eigenspace of 0. Denote
this integer by Index0�Q�.

Corollary 3.2. We have the following limits.
(i) As φ tends to zero, the partition function converges to †

lim
φ→0

ZV =
n∏
i=i

ϑ1�τ; �1−�i� θ�
ϑ1�τ;�iθ�

: [3.8]

As θ→ 0, the partition function converges to

lim
θ→0

ZV = zĉ/2
n∏
i=1

ϑ1�τ; �1−�i�φτ�
ϑ1�τ;�iφτ�

: [3.9]

(ii) For θ � �0; π�, we may take the iterated limit as φ→ 0 and
then q→ 0 to obtain the equivariant, quantum-mechanical
index studied in ref. 4,

lim
q→0

(
lim
φ→0

ZV

)
=

n∏
i=1

sin ��1−�i�θ/2�
sin ��iθ/2�

: [3.10]

†The existence of a field theory for φ = 0 requires special analysis. For λ 6= 0, the exis-
tence of a φ = 0 field theory (not just the partition function) is a consequence of the
assumption 1.24 for V , and the φ = 0 theory is also the φ→ 0 limit of the twist field
theory. The elliptic genus of the limiting theory is the limit 3.8, and it agrees with the
formula proposed in ref. 15. In the case λ = 0, the elliptic genus also has a φ→ 0 limit
as long as 0 + �θ� + 2π, but this limit is not the genus of a limiting theory.

(iii) The integer-valued index Index0�Q� can be obtained as

Index0�Q� = lim
θ→0

(
lim
φ→0

ZV

)
= lim

φ→0

(
lim
θ→0

ZV

)
= lim

θ→0

(
lim
q→0

(
lim
φ→0

ZV

))
=

n∏
i=1

(
1
�i
− 1

)
: [3.11]

(iv) On the other hand,

lim
θ→0

(
lim
q→0

ZV

)
= lim

q→0

(
lim
θ→0

ZV

)
= 1: [3.12]

Example 1: For any n, let V �z� =∑n
i=1 z

ki
i , with 2 � ki � �.

Then

�i =
1
ki
; ĉ =

n∑
i=1

ki − 2
ki

; [3.13]

and

Index0�Q� =
n∏
i=1

�ki − 1�: [3.14]

Example 2: For n = 2, let V �z� = zk1
1 + z1z

k2
2 . In this case,

�1 =
1
k1
;�2 =

k1 − 1
k1k2

; ĉ = 2
�k1 − 1��k2 − 1�

k1k2
; [3.15]

and

Index0�Q� = k1�k2 − 1� + 1: [3.16]

Remark: The integer-valued index 3.11 is stable under a
class of perturbations of V that are not necessarily quasi-
homogeneous. Briefly, we require that V = V1 + V2, where V1
satisfies the hypotheses 1.13–1.24 above. While V2 is a holomor-
phic polynomial, it is not necessarily quasi-homogeneous. In
place of this, we assume that the perturbation V2 is small with
respect to V1 in the following sense: given 0 + ε, there exists a
constant M2 + : such that for any multi-derivative ∂α of total
degree �α� � 0,

�∂αV2� � ε�∂V1� +M2: [3.17]
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