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The interplay between the two fundamental concepts of topological order and reflection positivity
allows one to characterize the ground states of certain many-body Hamiltonians. We define topo-
logical order in an appropriate fashion and show that certain operators have positive expectation
value in all ground states. We apply our method to vortex loops in a model relevant to topological
quantum memories.
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Introduction.— Topologically ordered systems have at-
tracted much attention, since they represent promising
candidates for the realization of a fault-tolerant quan-
tum computing architecture. Intuitively, topological or-
der can be understood as the property that local pertur-
bations cannot cause transitions between the different de-
generate ground states of certain many-body Hamiltoni-
ans; such transitions require global perturbations. There-
fore the subspace of topologically ordered ground states
seems to be a good place to store and process quantum
information [1–4].

Another fundamental concept that we use is reflection
positivity. This notion originally arose in the theory of
random fields, as the property that justifies inverse Wick
rotation from random fields to quantum fields [5], both at
zero and at positive temperature [6]. This property has
also played an important role in the analysis of phase
transitions and ground states in statistical mechanical
systems [7–9].

In this work, we show that these two fundamental con-
cepts allow one to characterize the ground states of cer-
tain reflection-symmetric Hamiltonians. In particular,
we show that the expectation value of certain local opera-
tors are positive in all ground states. In certain examples
this means that the ground states are vortex-free.

Understanding the ground-state properties of topolog-
ically ordered systems is not only interesting from a fun-
damental point of view, but is also relevant to topologi-
cal quantum computation: the ground states encode the
logical-qubit states.

We apply our method to a Hamiltonian introduced in
[10] which is a quartic polynomial in Majoranas (Ma-
jorana operators) defined on a planar lattice. We fo-
cus on this interaction because, in lowest-order pertur-
bation theory, it is equivalent to the toric code model,
the archetypical model for a topologically-ordered quan-
tum memory [1]. We show in this example that with
our choice of the signs of the coupling constants, all the
ground states are free of vortices.

We first review the concept of reflection positivity. We
then introduce the concept of W -topological order that
is a special case of the more general topological order
defined in [2, 3]. With these two concepts in hand, we
show how topological order and reflection positivity al-

low one to characterize the properties of the degenerate
ground states. In particular, we show that the expecta-
tion value of certain operators is non-negative. Finally,
we show that when the Hamiltonian in [10] is reflection-
symmetric, no vortices are present in the ground states.

Reflection Positivity.— Consider a lattice Λ which is
divided in two parts Λ± mapped into each other by re-
flection in a plane Π. We represent this reflection as an
anti-unitary operator ϑ on the Hilbert space H of our
model. To each vertex of the lattice, we associate one or
more operators Oi, and the reflection maps them into

ϑ(Oi) = ϑOi ϑ
−1 = O†ϑi , (1)

where site ϑi is the reflection of site i.
Let A denote the set of operators that are sums of

products of those Oi’s, where i is in Λ−. The reflection-
positivity property for the pair H and A means: for every
A ∈ A and every 0 6 β,

0 6 Tr(Aϑ(A) e−βH) . (2)

We use the notation WA = Aϑ(A).
W -Topological Order.— Let us denote the ground-

state subspace of H to be P. We also use the symbol
P for the orthogonal projection onto the ground-state
subspace. One says that P has W -topological order if
PWP is a scalar multiple of P. This definition is a spe-
cialization of general topological order defined in [2, 3].
In other words, the operator W cannot cause transitions
between different ground states.

Topological Order ensures Positivity.— Consider a
Hamiltonian H and an operator A ∈ A with the reflec-
tion positivity property (2). Assume that the ground-
state subspace has WA-topological order. Then we infer
positivity

0 6 〈Ω,WAΩ〉 , (3)

for any ground state Ω of H.
Explanation.— Suppose H has N orthonormal ground

states denoted by Ωµ, with µ = 1, . . . , N . Normalize the
ground-state energy of H to be zero. Assuming (2) and
taking the β →∞ limit leads to

0 6
N∑
µ=1

〈Ωµ,WA Ωµ〉. (4)
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We infer from (4) that the expectation value of WA is
non-negative in at least one of the ground states. Since
the ground states are WA-topologically ordered,

〈Ωµ,WA Ωµ〉 = α〈Ωµ,Ωµ〉 = α , (5)

with α a constant, independent of µ. As the expectation
value must be non-negative for some µ, we conclude that
0 6 α, and

0 6 〈Ωµ,WA Ωµ〉 for µ = 1, . . . , N . (6)

Vortex Loops.—In certain situations, the operator WA

equals a vortex loop. A loop C of length 2l is an ordered
sequence {i1, i2, . . . , i2l, i1} of nearest-neighbor sites in Λ.
Associated to each loop C, we define a vortex loop W (C)
as a product of Oi’s,

W (C) = Oi1Oi2 · · ·Oi2l . (7)

Since we want W (C) to have the form Aϑ(A), we choose
A = Oi1 · · ·Oil , so by (1),

W (C) = Oi1Oi2 · · ·OilO
†
ϑi1
O†ϑi2 · · ·O

†
ϑil
. (8)

In the following example, we consider the case where

each of the operators Oi is a Majorana. Then ci = c†i =

c−1i and {ci, cj} = 2δij . In this case, we introduce a phase
il and redefine W (C) in place of (7) as

W (C) = ilci1ci2 · · · cilcϑi1cϑi2 · · · cϑil . (9)

Thus, we have W (C) = W (C)† = W (C)−1, so the vortex
loop has eigenvalues ±1, and its expectation value in a
unit vector lies between −1 and +1.

We say that the loop C is vortex-free when the ex-
pectation value of W (C) is +1 and vortex-full when the
expectation value is−1. In the intermediate cases, we say
that the loop is partially free and partially full, according
to the sign of the expectation value of W (C).

In the special case that W (C) commutes with H, and
therefore W (C) is conserved, it is possible to choose
an orthonormal basis of ground states of H for which
W (C) = ±1. Then the loop C is either vortex-free or
vortex-full in each of these ground states.

An example of topological quantum memory.—As an
example, we consider the Hamiltonian proposed in [10],
describing interactions between Majoranas localized on
the vertices of a planar lattice. The model studied in
[10] has a Hamiltonian of the form

H =
∑
j

H0,j + λ
∑
j<k

V(jk) . (10)

Here j labels square islands of the lattice, see Fig. 1, and
the Hamiltonian H0,j is a product of four independent
Majoranas cja , cjb , cjc , and cjd of the form,

H0,j = −cjacjbcjccjd . (11)

The constant λ in (10) is dimensionless, and V(jk) =

⇧
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FIG. 1. In the lattice, we depict square islands by gray
squares and Majoranas by black dots. Bonds (jk) which con-
nect nearest-neighbor square islands are indicated by directed
bonds between nearest-neighbor Majoranas. The orientation
of the bonds define circuits around eight-site polygons that
lie between the square islands.

icjck are quadratic interactions between Majoranas. The
authors show in [10] that for small values of the pa-
rameter λ in the Hamiltonian, the model possesses W -
topological order for local operators W .

We illustrate the planar-lattice configuration in Fig. 1.
Each pair of nearest-neighbor islands j and k defines a
directed bond (jk) that characterizes the coupling of the
neighboring islands, and which determines V(jk). Each
island j consists of a square with independent Majoranas
caj , cbj , c

c
j , and cdj which we place on the four corners of

the square island as specified in Fig. 1 (in particular a,
b lie on the top of the square and c, d lie on the bottom
of the square). For four nearest-neighbor squares labeled
i, j, k, l on the lattice, define the loop Cijkl = {i, j, k, l}
and the vortex operator

W (Cijkl) = ciccjacjbckdckaclccldcib . (12)

The vortex operators have the form (9) and thus eigen-
values ±1.

Majoranas and Reflection Positivity.—The vortex
W (Cijkl) that is bisected by the plane Π, as illustrated
in Fig. 1, can be written in the form

W (Cijkl) = WA = Aϑ(A) , (13)

with A = cldcibciccja . With our choice of V(jk) the Hamil-
tonian H in (10) is reflection-symmetric,

ϑ(H) = H . (14)

In [11], we have studied a class of reflection-symmetric
Majorana Hamiltonians that includes the Hamiltonian
(10), and we demonstrated that reflection positivity
holds.

As a consequence, the expectation value of W (Cijkl)
in the thermal state at inverse temperature β is pos-
itive. Furthermore, in its topological phase, the loop
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Cijkl = {i, j, k, l} is vortex free in all ground states.
When the ground state is non-degenerate, (2) implies
that loop Cijkl is vortex-free in the ground state. Fi-
nally, if the lattice is periodic, any loop Cijkl can be used
in this argument. Therefore, every ground state is free
of each elementary vortex.

Conclusion.—This work is based on general principles.

Therefore the methods described here might be useful
in the study of other many-body, topologically-ordered
Hamiltonians.
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