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Abstract We study space-time symmetries in scalar quantum field theory on an arbi-
trary static space-time. We first consider Euclidean quantum field theory, and show that
the isometry group is generated by one-parameter subgroupswhich have either self-
adjoint or unitary quantizations. We then show that the self-adjoint semigroups thus
constructed can be analytically continued to one-parameter unitary groups, and using
this analytic continuation we construct a unitary representation of the isometry group
of the Lorentz-signature metric. We illustrate our method for the explicit example of
hyperbolic space, whose Lorentzian continuation is Anti-de Sitter space.

1 Introduction

The extension of quantum field theory to curved space-times has led to the discovery
of many qualitatively new phenomena which do not occur in thesimpler theory on
Minkowski space, such as Hawking radiation; for backgroundand historical references,
see [2, 6, 19].

The reconstruction of quantum field theory on a Lorentz-signature space-time from
the corresponding Euclidean quantum field theory makes use of Osterwalder-Schrader
(OS) positivity [16, 17] and analytic continuation. On a curved background, there may
be no proper definition of time-translation and no Hamiltonian; thus, the mathemati-
cal framework of Euclidean quantum field theory may break down. However, on static
space-times there is a Hamiltonian and it makes sense to define Euclidean QFT. This
approach was recently taken by the authors [12], in which thefundamental properties
of Osterwalder-Schrader quantization and some of the fundamental estimates of con-
structive quantum field theory1 were generalized to static space-times.

The previous work [12], however, did not address the analytic continuation which
leads from a Euclidean theory to a real-time theory. In the present article, we initiate a

1 For background on constructive field theory in flat space-times, see [8, 10].



2 Arthur Jaffe and Gordon Ritter

treatment of the analytic continuation by constructing unitary operators which form a
representation of the isometry group of the Lorentz-signature space-time associated to
a static Riemannian space-time. Our approach is similar in spirit to that of Fröhlich [4]
and of Klein and Landau [14], who showed how to go from the Euclidean group to the
Poincaré group without using the field operators on flat space-time.

This work also has applications to representation theory, as it provides a natural
(functorial) quantization procedure which constructs nontrivial unitary representations
of Lie groups which arise as isometry groups of static, Lorentz-signature space-times.
For example, when applied toAdSd+1, our procedure gives a unitary representation of
SO(d,2). Although very different in the details, this is reminiscent of the construction
of unitary representations through geometric quantization (see for instance [9, 20]).

2 Classical Space-Time

2.1 Structure of Static Space-Times

Definition 2.1 A quantizable static space-timeis a complete, connected orientable
Riemannian manifold(M,gab) with a globally-defined (smooth) Killing fieldξ which
is orthogonal to a codimension-one hypersurfaceΣ ⊂ M, such that the orbits ofξ are
complete and each orbit intersectsΣ exactly once.

Throughout this paper, we assume thatM is a quantizable static space-time. Defi-
nition 2.1 implies that there is a global time functiont defined up to a constant by the
requirement thatξ = ∂/∂ t. ThusM is foliated by time-slicesMt , and

M = Ω−∪Σ ∪Ω+

where the unions are disjoint,Σ = M0, andΩ± are open sets corresponding tot > 0 and
t < 0 respectively. We infer existence of an isometryθ which reverses the sign oft,

θ : Ω± → Ω∓ such thatθ 2 = 1, θ |Σ = id.

Let C = (−∆ + m2)−1 be the resolvent of the Laplacian, also called thefree co-
variance, wherem2 > 0. ThenC is a bounded self-adjoint operator onL2(M). For each
s∈R, the Sobolev spaceHs(M) is a real Hilbert space, defined as completion ofC∞

c (M)
in the norm

‖ f‖2
s = 〈 f ,C−s f 〉. (2.1)

The inclusionHs →֒ Hs+k for k > 0 is Hilbert-Schmidt. DefineS :=
⋂

s<0Hs(M) and
S ′ :=

⋃
s>0Hs(M). Then

S ⊂ H−1(M) ⊂ S
′

form a Gelfand triple, andS is a nuclear space.
Recall thatS ′ has a naturalσ -algebra of measurable sets, calledcylinder sets(see

for instance [7, 8, 18]). There is a unique Gaussian probability measureµ with mean
zero and covarianceC defined on the cylinder sets inS ′ (see [7]).

More generally, one may consider a non-Gaussian, countably-additive measureµ
onS ′ and the space

E := L2(S ′,µ).
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We are interested in the case that the monomials of the formA(Φ) = Φ( f1) . . .Φ( fn) are
all elements ofE , and for which their span is dense inE . For an open setΩ ⊂M, letEΩ
denote the closure inE of the set of monomialsA(Φ) = ∏i Φ( fi) where supp( fi) ⊂ Ω
for all i. Of particular importance for Euclidean quantum field theory is the positive-
time subspace

E+ := EΩ+ .

2.2 The Operator Induced by an Isometry

Isometries of the underlying space-time manifold act on a Hilbert space of classical
fields arising in the study of a classical field theory. Forf ∈C∞(M) andψ : M → M an
isometry, define

f ψ ≡ (ψ−1)∗ f = f ◦ψ−1.

Since det(dψ) = 1, the operationf → f ψ extends to a bounded operator onH±1(M) or
onL2(M). An extensive treatment of isometries for static space-times appears in [12].

Definition 2.2 Let ψ be an isometry, and A(Φ) = Φ( f1) . . .Φ( fn) ∈ E a monomial.
Define the induced operator

Γ (ψ)A ≡ Φ( f1
ψ) . . .Φ( fn

ψ) , (2.2)

and extendΓ (ψ) by linearity to the dense domain of polynomials inE .

3 Osterwalder-Schrader Quantization

3.1 Quantization of Vectors (The Hilbert SpaceH of Quantum Theory)

In this section we define the quantization mapE+ →H , whereH is the Hilbert space
of quantum theory. The existence of the quantization map relies on a condition known
as Osterwalder-Schrader (or reflection) positivity. A probability measureµ on cylinder
sets inS ′ is said to bereflection positiveif

∫
Γ (θ )F F dµ ≥ 0 (3.1)

for all F in the positive-time subspaceE+ ⊂ E . Let Θ = Γ (θ ) be the reflection onE
induced byθ . Define the sesquilinear form(A,B) onE+×E+ as(A,B) = 〈ΘA,B〉E .

Assumption 1 (O-S Positivity) Any measure dµ that we consider is reflection positive
with respect to the time-reflectionΘ .

Definition 3.1 (OS-Quantization)Given a reflection-positive measure dµ , the Hilbert
spaceH of quantum theory is the completion ofE+/N with respect to the inner prod-
uct given by the sesquilinear form(A,B). Denote the quantization mapΠ for vectors
E+ → H byΠ(A) = Â, and write

〈Â, B̂〉H = (A,B) = 〈ΘA,B〉E for A,B∈ E+ . (3.2)
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3.2 Quantization of Operators

The basic quantization theorem gives a sufficient conditionto map a (possibly un-
bounded) linear operatorT on E to its quantization, a linear operatorT̂ on H . Con-
sider a densely-defined operatorT onE , the unitary time-reflectionΘ , and the adjoint
T+ = ΘT∗Θ . A preliminary version of the following was also given in [11].

Definition 3.2 (Quantization Condition I) The operator T satisfies QC-I if:

i. The operator T has a domainD(T) dense inE .
ii. There is a subdomainD0 ⊂ E+∩D(T)∩D(T+), for whichD̂0 ⊂ H is dense.
iii. The transformations T and T+ both mapD0 into E+.

Theorem 3.1 (Quantization I) If T satisfies QC-I, then

i. The operators T↾D0 and T+↾D0 have quantizationŝT andT̂+ with domainD̂0.
ii. The operatorsT̂∗ =

(
T̂↾D̂0

)∗
andT̂+ agree onD̂0.

iii. The operatorT̂↾D0 has a closure, namelŷT∗∗.

Proof We wish to define the quantization̂T with the putative domain̂D0 by

T̂Â = T̂A . (3.3)

For any vectorA ∈ D0 and for anyB ∈ (D0∩N ), it is the case that̂A = Â+B. The

transformationT̂ is defined by (3.3) iffT̂A= ̂T(A+B) = T̂A+ T̂B. Hence one needs
to verify thatT : D0∩N → N , which we now do.

The assumptionD0 ⊂ D(T+), along with the fact thatΘ is unitary, ensures that
ΘD0 ⊂ D(T∗). Therefore for anyF ∈ D0,

〈ΘF,TB〉E = 〈T∗ΘF,B〉E = 〈Θ (ΘT∗ΘF) ,B〉E = 〈ΘT+F,B〉E = 〈T̂+F , B̂〉H .
(3.4)

In the last step we use the fact assumed in QC-I.iii thatT+ : D0 → E+, yielding the
inner product of two vectors inH . We infer from the Schwarz inequality inH that

|〈ΘF,TB〉E | ≤ ‖T̂+F‖
H

‖B̂‖
H

= 0 .

As 〈ΘF,TB〉E = 〈F̂ , T̂B〉H , this means that̂TB⊥ D̂0. As D̂0 is dense inH by QC-I.ii,
we inferT̂B= 0. In other words,TB∈ N as required to definêT.

In order show thatD̂0 ⊂D(T̂∗), perform a similar calculation to (3.4) with arbitrary
A∈ D0 replacingB, namely

〈F̂, T̂Â〉H = 〈ΘF,TA〉E = 〈Θ (ΘT∗ΘF) ,A〉E = 〈ΘT+F ,A〉E = 〈T̂+F , Â〉H . (3.5)

The right side is continuous in̂A∈ H , and thereforêF ∈ D(T∗). FurthermoreT∗F̂ =

T̂+F. This identity shows that ifF ∈N , thenT̂+F = 0. HenceT+↾D0 has a quantiza-
tion T̂+, and we may write (3.5) as

T∗F̂ = T̂+F̂ , for all F ∈ D0 . (3.6)

In particularT̂∗ is densely defined sôT has a closure. This completes the proof.
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Definition 3.3 (Quantization Condition II) The operator T satisfies QC-II if

i. Both the operator T and its adjoint T∗ have dense domainsD(T),D(T∗) ⊂ E .
ii. There is a domainD0 ⊂ E+ in the common domain of T , T+, T+T, and TT+.
iii. Each operator T , T+, T+T, and TT+ mapsD0 into E+.

Theorem 3.2 (Quantization II) If T satisfies QC-II, then

i. The operators T↾D0 and T+↾D0 have quantizationŝT andT̂+ with domainD̂0.
ii. If A ,B∈ D0, one has〈B̂, T̂Â〉H = 〈T̂+B̂, Â〉H .

Remarks.
i. In Theorem 3.2 we drop the assumption that the domainD̂0 is dense, obtaining quan-
tizationsT̂ andT̂+ whose domains are not necessarily dense. In order to compensate
for this, we assume more properties concerning the domain and the range ofT+ onE .
ii. As D̂0 need not be dense inH , the adjoint ofT̂ need not be defined. Nevertheless,
one calls the operator̂T symmetricin case one has

〈B̂, T̂Â〉H = 〈T̂B̂, Â〉H , for all A,B∈ D0 . (3.7)

iii. If Ŝ⊃ T̂ is a densely-defined extension ofT̂, thenŜ∗ = T̂+ on the domainD̂0.

Proof We define the quantization̂T with the putative domainD̂0. As in the proof of
Theorem 3.1, this quantization̂T is well-defined iff it is the case thatT : D0∩N →N .
For anyF ∈ D0∩N , by definition‖F̂‖

H
= 0. Also

〈TF,TF〉H = (TF,TF) = 〈ΘTF,TF〉E = 〈F,T∗ΘTF〉E ,

where one uses the fact thatD0 ⊂ D(T+T). Thus

〈TF,TF〉H =
〈
ΘF,T+TF

〉
E

= 〈F,T+TF〉H .

Here we use the fact thatT+T mapsD0 to E+. Thus one can use the Schwarz inequality
onH to obtain

〈TF,TF〉H ≤ ‖F̂‖
H

‖T̂+TF‖
H

= 0 .

HenceT : D0∩N → N , andT has a quantization̂T with domainD̂0.
In order verify thatT+↾D0 has a quantization, one needs to show thatT+ : D0 ∩

N ⊂ N . Repeat the argument above withT+ replacingT. The assumptionTT+ :
D0 → E+ yields forF ∈ D0∩N ,

〈T+F,T+F〉H = 〈T∗ΘF,T+F〉E = 〈ΘF,TT+F〉E = 〈F̂ , T̂T+F〉H .

Use the Schwarz inequality inH to obtain the desired result that

〈T+F,T+F〉H ≤ ‖F̂‖
H
‖T̂T+F‖

H
= 0 .

HenceT+ has a quantization̂T+ with domainD̂0, and forB∈D0 one hasT̂+B= T̂+B̂.
In order to establish (ii), assume thatA,B∈ D0. Then

〈B̂, T̂Â〉H = 〈ΘB,TA〉E = 〈Θ (ΘT∗ΘB) ,A〉E = 〈ΘT+B,A〉E

= 〈T̂+B, Â〉H = 〈T̂+B̂, Â〉H . (3.8)

This completes the proof.
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3.3 Applications

The case of Euclidean symmetry for(t,x) ∈ M = Rd was treated by Fröhlich [4] and
Klein and Landau [14]. The generalization to arbitrary static, real-analytic space-times
is given in the following sections.

4 Structure of the Lie Algebra of Killing Fields

For the remainder of this paper we assume the following, which is clearly true in the
Gaussian case as the Laplacian commutes with the isometry groupG. (See also [12].)

Assumption 2 The isometry groups G that we consider leave the measure dµ invari-
ant, in the sense that G has a unitary representation onE .

4.1 The Representation ofg onE

Lemma 4.1Let Gi be an analytic group with Lie algebragi (i = 1,2), and letλ : g1 →
g2 be a homomorphism. There cannot exist more than one analytichomomorphism
π : G1 → G2 for which dπ = λ . If G1 is simply connected then there is always one such
π .

Let D = d/dt denote the canonical unit vector field onR. Let G be a real Lie group
with algebrag, and letX ∈ g. The maptD→ tX(t ∈R) is a homomorphism of Lie(R)→
g, so by the Lemma there is a unique analytic homomorphismξX : R→ G such that
dξX(D) = X. Conversely, ifη is an analytic homomorphism ofR → G, and if we let
X = dη(D), it is obvious thatη = ξX. ThusX 7→ ξX is a bijection ofg onto the set of
analytic homomorphismsR → G. The exponential map is defined by exp(X) := ξX(1).
For complex Lie groups, the same argument applies, replacing R with C throughout.

Sinceg is connected, so is exp(g). Hence exp(g) ⊆ G0, whereG0 denotes the con-
nected component of the identity inG. It need not be the case for a general Lie group
that exp(g) = G0, but for a large class of examples (the so-calledexponential groups)
this does hold. For any Lie group, exp(g) contains an open neighborhood of the identity,
so the subgroup generated by exp(g) always coincides withG0.

We will apply the above results withG = Iso(M), the isometry group ofM, and
g = Lie(G) the algebra of global Killing fields. Thus we have a bijectivecorrespondence
between Killing fields and 1-parameter groups of isometries. This correspondence has
a geometric realization: the 1-parameter group of isometries

φs = ξX(s) = exp(sX)

corresponding toX ∈ g is the flow generated byX.
Consider the two different 1-parameter groups of unitary operators:

1. the unitary groupφ∗
s onL2(M), and

2. the unitary groupΓ (φs) onE .
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Stone’s theorem applies to both of these unitary groups to yield densely-defined self-
adjoint operators on the respective Hilbert spaces.

In the first case, the relevant self-adjoint operator is simply an extension of−iX ,
viewed as a differential operator onC∞

c (M). This is because forf ∈C∞
c (M) andp∈ M,

we have:

Xp f = (LX f )(p) =
d
ds

f (φs(p))|s=0.

Thus−iX is a densely-defined symmetric operator onL2(M), and Stone’s theorem
implies that−iX has self-adjoint extensions.

In the second case, the unitary groupΓ (φs) on E also has a self-adjoint generator
Γ (X), which can be calculated explicitly. By definition,

e−isΓ (X)
[ n

∏
i=1

Φ( fi)
]

=
n

∏
i=1

Φ( fi ◦φ−s).

Now replaces→−s and calculated/ds|s=0 applied to both sides of the last equation
to see that

Γ (X)
[ n

∏
i=1

Φ( fi)
]

=
n

∑
j=1

Φ( f1) . . .Φ(−iX f j )Φ( f j+1) . . .Φ( fn) .

One may check thatΓ is a Lie algebra representation ofg, i.e.Γ ([X,Y])= [Γ (X),Γ (Y)].

4.2 A Direct Sum Decomposition ofg

For eachξ ∈ g, there exists some dense domain inE on whichΓ (ξ ) is self-adjoint, as
discussed previously. However, the quantizationsΓ̂ (ξ ) acting onH may be hermitian,
anti-hermitian, or neither depending on whether there holds a relation of the form

Γ (ξ )Θ = ±ΘΓ (ξ ), (4.1)

with one of the two possible signs, or whether no such relation holds.
Even if (4.1) holds, to complete the construction of a unitary representation one

must prove that there exists a dense domain inH on which the quantization̂ξ is self-
adjoint or skew-adjoint. This nontrivial problem will be dealt with in a later section
using Theorems 3.1 and 3.2 and the theory of symmetric local semigroups [13, 4].
Presently we determinewhichelements withing satisfy relations of the form (4.1).

Let ϑ := θ ∗, and define a linear operatorT : g → g by

T (X) := ϑXϑ . (4.2)

From (4.2) it is not obvious that the range ofT is contained ing. To prove this, we
recall some geometric constructions.

Let M,N be manifolds, letψ : M →N be a diffeomorphism, andX ∈Vect(M). Then

ψ−1∗Xψ∗ = X(· ◦ψ)◦ψ−1. (4.3)
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defines an operator onC∞(N). One may check that this operator is a derivation, thus
(4.3) defines a vector field onN. The vector field (4.3) is usually denoted

ψ∗X = dψ(Xψ−1(p))

and referred to as thepush-forwardof X.
We now wish to show thatg = g+ ⊕ g−, whereg± are the±1-eigenspaces ofT .

This is proven by introducing an inner product ong with respect to whichT is self-
adjoint. LetK be a nonempty compact subset ofM. Endowg with the inner product

(X,Y)K =

∫

K
〈X, Y〉dv, (4.4)

where〈 , 〉 is the metric onM anddv is the Riemannian volume measure. Since elements
of g are smooth vector fields, the function〈X, Y〉 is smooth, hence bounded on any
compact setK. Thus(X,Y)K is defined for allX,Y ∈ g.

Theorem 4.1Considerg as a Hilbert space with inner product(4.4). The operator
T : g → g is self-adjoint withT 2 = I; hence

g = g+⊕g− (4.5)

as an orthogonal direct sum of Hilbert spaces, whereg± are the±1-eigenspaces ofT .
Further, ∂t ∈ g− (hencedim(g−) ≥ 1). Elements ofg− have hermitian quantizations,
while elements ofg+ have anti-hermitian quantizations.

Proof Write (4.2) as
T (X) = θ−1∗Xθ ∗ = θ∗X . (4.6)

ThusT is the operator of push-forward byθ . The push-forward of a Killing field by
an isometry is another Killing field, hence the range ofT is contained ing. Also, T
must have a trivial kernel sinceT 2 = I , and this implies thatT is surjective. It follows
from (4.6) thatT is a Hermitian operator ong. HenceT is diagonalizable and has real
eigenvalues which are square roots of 1. This establishes the decomposition (4.5). That
elements ofg− have hermitian quantizations, while elements ofg+ have anti-hermitian
quantizations follows from Theorem 3.1.

One must not be tempted to speculate thatg− consists only of∂t . In particular,
dim(g−) = 2 for M = H 2.

5 G is generated by reflection-invariant and reflected isometries

Let G = Iso(M) denote the isometry group ofM, as above. ThenG has aZ2 subgroup
containing{1,θ}. This subgroup acts onG by conjugation, which is just the action
ψ → ψθ := θψθ . Conjugation is an (inner) automorphism of the group, so

(ψφ)θ = ψθ φθ , (ψθ )−1 = (ψ−1)θ .
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Definition 5.1 We say thatψ ∈ G is reflection-invariant if

ψθ = ψ ,

and thatψ is reflectedif
ψθ = ψ−1.

Let GRI denote the subgroup of G consisting of reflection-invariantelements, and let
GR denote the subset of reflected elements.

Example 5.1Let z= x+ it be a coordinate onM = R2; then time-reflection is complex
conjugation, and rotations in thext-plane are reflected isometries. DefineTwz= z+w.
SinceTwz= z+w = Twz, it follows Tw is reflection-invariant ifw is real, reflected ifw
is pure imaginary, and otherwise it is neither.

Note thatGRI is the stabilizer of theZ2 action, hence a subgroup. Also,GR is closed
under the taking of inverses and does contain the identity, but the product of two re-
flected isometries is no longer reflected unless they commute. Generally, the product of
an element ofGR with an element ofGRI is neither an element ofGR nor of GRI. Thus
we have:

{1,θ} ⊂ GR∪GRI ( G.

Although it is not true thatG = GR∪GRI, it is true that the identity component ofG is
generated byGR∪GRI.

Theorem 5.1Let G0 denote the connected component of the identity in G. Then G0 is
generated by GR∪GRI.

Proof Sinceg = g+⊕g− as a direct sum of vector spaces (though not of Lie algebras),
we have

G0 =
〈
exp(g)

〉
=

〈
exp(g+)∪exp(g−)

〉
.

Choose bases{ξ±,i}i=1,...,n± for g± respectively. Then we have:

G0 =
〈
{exp(sξ+,i) : 1≤ i ≤ n+, s∈ R}∪{exp(sξ−, j) : 1≤ j ≤ n−, s∈ R}

〉
.

Furthermore, exp(sξ−,i) is reflected, while exp(sξ+,i) is reflection-invariant, as we now
prove. Fixξ± ∈ g±, and note that

q±(s) := θ exp(sξ±)θ

is a one-parameter group of isometries, henceq±(s) corresponds to a unique element
of g. This element is clearlyϑξ±ϑ , and sinceξ± ∈ g±, we infer thatϑξ±ϑ = ±ξ±.
Therefore

exp(±sξ±) = q±(s) ≡ θ exp(sξ±)θ .

In particular,U(s) = exp(sξ−) satisfies the relationθU(s) = U(s)−1θ , i.e. exp(sξ−) is
reflected. Similarly, exp(sξ+) is reflection-invariant.

Corollary 5.1 The Lie algebra of the subgroup GRI is g+. In particular, g+ is a Lie
subalgebra ofg.

To summarize, the isometry group of a static space-time can always be generated
by a collection ofn (= dimg) one-parameter subgroups, each of which consists either
of reflected isometries, or reflection-invariant isometries. Each of these one-parameter
subgroups is null-invariant
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6 Construction of Unitary Representations

6.1 Self-adjointness of semigroups

In this section, we recall several results on self-adjointness of semigroups. Roughly
speaking, these results imply that if a one-parameter family Sα of unbounded symmetric
operators satisfies a semigroup condition of the formSαSβ = Sα+β , then under suitable
conditions one may conclude essential self-adjointness.

A theorem of this type appeared in a 1970 paper of Nussbaum [15], who assumed
that the semigroup operators have a common dense domain. Theresult was rediscovered
independently by Fröhlich, who applied it to quantum field theory in several important
papers [5, 3]. For our intended application to quantum field theory, it turns out to be
very convenient to drop the assumption that∃a such that theSα all have a common
dense domain for|α| < a, in favor of the weaker assumption that

⋃
α>0D(Sα) is dense.

A generalization of Nussbaum’s theorem which allows the domains of the semi-
group operators to vary with the parameter, and which only requires theunionof the
domains to be dense, was later formulated and two independent proofs were given: one
by Fröhlich [4], and another by Klein and Landau [13]. The latter also used this theorem
in their construction of representations of the Euclidean group and the corresponding
analytic continuation to the Lorentz group [14].

In order to keep the present article self-contained, we firstdefine symmetric local
semigroups and then recall the refined self-adjointness theorem of Fröhlich, and Klein
and Landau.

Definition 6.1 LetH be a Hilbert space, let T> 0 and for eachα ∈ [0,T], let Sα be a
symmetric linear operator on the domainDα ⊂ H , such that:

(i) Dα ⊃ Dβ if α ≤ β andD :=
⋃

0<α≤T Dα is dense inH ,
(ii) α → Sα is weakly continuous,
(iii) S0 = I, Sβ (Dα) ⊂ Dα−β for 0≤ β ≤ α ≤ T, and
(iv) SαSβ = Sα+β onDα+β for α,β ,α + β ∈ [0,T].

In this situation, we say that(Sα ,Dα ,T) is a symmetric local semigroup.

It is important thatDα is not required to be dense inH for eachα; the only density
requirement is (i).

Theorem 6.1 ([13, 4])For each symmetric local semigroup(Sα ,Dα ,T), there exists a
unique self-adjoint operator A such that2

Dα ⊂ D(e−αA) and Sα = e−αA|Dα for all α ∈ [0,T].

Also, A≥−c if and only if‖Sα f‖ ≤ ecα‖ f‖ for all f ∈ Dα and0 < α < T.

2 The authors of [4, 13] also showed that

D̂ :=
⋃

0<α≤S

[ ⋃

0<β<α
Sβ (Dα )

]
, where 0< S≤ T,

is acore for A, i.e.(A,D̂) is essentially self-adjoint.
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6.2 Reflection-Invariant Isometries

Lemma 6.1Let ψ be a reflection-invariant isometry and assume∃ p ∈ Ω+ such that
ψ(p) ∈ Ω+. Thenψ preserves the positive-time subspace, i.e.ψ(Ω+) ⊆ Ω+.

Proof Note thatψ(Σ) ⊆ Σ , for if not then choosep∈ Σ with ψ(p) 6∈ Σ . Without loss
of generality, assumeψ(p) ∈ Ω+. ThusΩ+ contains(θψθ )(p) = θψ(p)∈ Ω−, a con-
tradiction sinceΩ− ∩Ω+ = /0. We used the fact thatθ = id on Σ . Henceψ restricts
to an isometry ofΣ . It follows that the restriction ofψ to M \Σ is also an isometry.
However,M \Σ = Ω−⊔Ω+, where⊔ denotes the disjoint union. Thereforeψ(Ω+) is
wholly contained in eitherΩ+ or Ω−, as the alternative would violate continuity. The
possibility thatψ(Ω+) ⊆ Ω− is ruled out by our assumption.

Lemma 6.1 has the immediate consequence that ifξ ∈ g+ then the one-parameter
group associated toξ is positive-time-invariant. This result plays a key role inthe proof
of Theorem 6.2.

6.3 Construction of Unitary Representations

The rest of this section is devoted to proving that the theoryof symmetric local semi-
groups can be applied to the quantized operators onH corresponding to each of a set
of 1-parameter subgroups ofG = Iso(M). We proceed in two steps. The first step is to
show that the 1-parameter subgroups of interest define operators onH ; for this we use
Theorems 3.1, 3.2 and 6.1.

Theorem 6.2Let (M,gab) be a quantizable static space-time. Letξ be a Killing field
which lies ing+ or g−, with associated one-parameter group of isometries{φα}α∈R.
Then there exists a densely-defined self-adjoint operator Aξ onH such that

Γ̂ (φα) =

{
e−αAξ , if ξ ∈ g−

eiαAξ if ξ ∈ g+.

Proof First suppose thatξ ∈ g−, which implies that the isometriesφα are reflected, and
soΓ (φα)+ = Γ (φα ). Define

Ωξ ,α := φ−1
α (Ω+).

For sufficiently smallα, Ωξ ,α is a nonempty open subset ofΩ+, and moreover, as
α → 0+, Ωξ ,α increases to fillΩ+ with Ωξ ,0 = Ω+. These statements follow imme-
diately from the fact thatφα(p) is continuous with respect toα, andφ0 is the identity
map.

Sinceφα(Ωξ ,α) ⊆ Ω+, we infer thatΓ (φα )EΩξ ,α ⊆ E+. By Theorem 3.2,Γ (φα )
has a quantization which is a symmetric operator on the domain

Dξ ,α := Π(EΩξ ,α ).

Fix some positive constanta with Ωξ ,a nonempty. Note that
⋃

0<α≤a

Ωξ ,α = Ω+ ⇒
⋃

0<α≤a

EΩξ ,α = E+.
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It follows that
Dξ :=

⋃

0<α≤a

Dξ ,α

is dense inH . This establishes condition (i) of Definition 6.1, and the other conditions
are routine verifications. Theorem 6.1 implies existence ofa self-adjoint generatorAξ
such that

Γ̂ (φα) = exp(−αAξ ) for all α ∈ [0,a] .

This proves the theorem in caseξ ∈ g−.
Now suppose thatξ ∈ g+, implying that the isometriesφα are reflection-invariant,

and
Γ (φα)+ = Γ (φα )−1 = Γ (φ−α ) on E .

Lemma 6.1 implies thatΓ (φα)E+ ⊆ E+. By Theorem 3.1,Γ (φα ) has a quantization
Γ̂ (φα ) which is defined and satisfies

Γ̂ (φα)∗ = Γ̂ (φα )−1

on the domainΠ(E+), which is dense inH by definition. In this case we do not need
Theorem 6.1; for eachα, Γ̂ (φα) extends by continuity to a one-parameter unitary group
defined on all ofH (not only for a dense subspace). By Stone’s theorem,

Γ̂ (φα) = exp(iαAξ )

for Aξ self-adjoint and for allα ∈ R. The proof is complete.

7 Analytic Continuation

Each Riemannian static space-time(M,gab) has a Lorentzian continuationMlor, which
we construct as follows. In adapted coordinates, the metricgab onM takes the form

ds2 = F (x)dt2 +Gµν(x)dxµ dxν . (7.1)

The analytic continuationt → −it of (7.1) is standard and gives a metric of Lorentz
signature,ds2

lor =−F dt2+G dx2, by which we define the Lorentzian space-timeMlor.
Einstein’s equation Ricg = kg is preserved by the analytic continuation, but we do not
use this fact anywhere in the present paper.

Let {ξ (±)
i : 1≤ i ≤ n±} be bases ofg±, respectively. LetA(±)

i = A
ξ (±)

i
be the self-

adjoint operators constructed by Theorem 6.2. Let

U (±)
i (α) = exp(iαA(±)

i ) , for 1≤ i ≤ n± (7.2)

be the associated one-parameter unitary groups.
We claim that the group generated by then= n+ +n− one-parameter unitary groups

(7.2) is isomorphic to the identity component of

Glor := Iso(Mlor),
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the group of Lorentzian isometries. Since locally, the group structure is determined by
its Lie algebra, it suffices to check that the generators satisfy the defining relations of
glor := Lie(Glor).

Since quantization of operators preserves multiplication, we have

X,Y,Z ∈ g, [X,Y] = Z ⇒ [Γ̂ (X),Γ̂ (Y)] = Γ̂ (Z). (7.3)

In what follows, we will use the notation̂g± for {Γ̂ (X) : X ∈ g±}, etc.
Quantization converts the elements ofg− from skew operators into Hermitian op-

erators; i.e. elements of̂g− are Hermitian onH and hence, elements ofi ĝ− are skew-
symmetric onH . Thusĝ+ ⊕ i ĝ− is a Lie algebra represented by skew-symmetric op-
erators onH .

Theorem 7.1We have an isomorphism of Lie algebras:

glor
∼= ĝ+⊕ i ĝ− . (7.4)

Proof Let MC be the manifold obtained by allowing thet coordinate to take values in
C. Defineψ : MC → MC by t 7→ −it . Thenglor is generated by

{ξ (+)
i }1≤i≤n+ ∪{η j}1≤ j≤n− , where η j := iψ∗

(
ξ (−)

j

)
.

It is possible to define a set of real structure constantsfi jk such that

[ξ (−)
i ,ξ (−)

j ] =
n+

∑
k=1

fi jkξ (+)
k . (7.5)

Applying ψ∗ to both sides of (7.5), the commutation relations ofglor are seen to be

[ηi ,η j ] = − fi jkξ (+)
k , (7.6)

together with the same relations forg+ as before. Now (7.3) implies that (7.6) are the
precisely the commutation relations ofĝ+⊕ i ĝ−, completing the proof of (7.4).

Corollary 7.1 Let(M,gab) be a quantizable static space-time. The unitary groups(7.2)
determine a unitary representation of G0

lor onH .

8 Hyperbolic Space and Anti-de Sitter Space

Consider Euclidean quantum field theory onM = H d. The metric is

ds2 = r−2
d

∑
i=1

dx2
i ,

where we definer = xd for convenience. The Laplacian is

∆H d = (2−d)r
∂
∂ r

+ r2∆Rd . (8.1)
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Fig. 1 Flow lines of the Killing fieldζ = (t2− r2)∂t +2tr ∂r onH d.

Thed−1 coordinate vector fields{∂/∂xi : i 6= d} are all static Killing fields, and any
one of the coordinatesxi (i 6= d) is a satisfactory representation of time in this space-
time. It is convenient to definet = x1 as before, and to identifyt with time.

The time-zero slice isM0 = H d−1. From

H d = {v∈ Rd,1 | 〈v,v〉 = −1, v0 > 0}

it follows that Isom(H d) = O+(d,1) and the orientation-preserving isometry group is
SO+(d,1).

For constant curvature spaces, one may solve Killing’s equationLKg= 0 explicitly.
Let us illustrate the solutions and their quantizations ford = 2. The three Killing fields

ξ = ∂t , η = t∂t + r∂r , ζ = (t2− r2)∂t +2tr ∂r (8.2)

are a convenient basis forg. Any d-dimensional manifold satisfies dimg ≤ d(d+1)/2,
manifolds saturating the bound are said to bemaximally symmetric, andH d is maxi-
mally symmetric.

Now,∂t f (−t) =− f ′(−t) so∂tΘ =−Θ∂t , hence∂t ∈ g−. Similar calculations show
[Θ ,η ] = 0 andΘζ = −ζΘ . Thusη spansg+, while ∂t ,ζ spang−. The commutation
relations3 for g are:

[η ,ζ ] = ζ , [η ,∂t ] = −∂t , [ζ ,∂t ] = −2η .

The flows associated to (8.2) are easily visualized:ξ is a right-translation, andη
flow-lines are radially outward from the Euclidean origin. The flows ofζ are Euclidean
circles, indicated by the darker lines in Figure 1. It follows that the flows ofη are
defined on all ofE+, while the flows ofζ are analogous to space-time rotations inR2,
and hence, must be defined on a wedge of the form

Wα = {(t, r) : t, r > 0, tan−1(r/t) < α}.

The simple geometric idea of Section 6.2 is nicely confirmed in this case: the flows of
η (the generator ofg+) preserve thet = 0 plane, and are separately isometries ofΩ+

andΩ−.
Corollary 7.1 implies that the procedure outlined above defines a unitary represen-

tation of the identity component of Iso(AdS2) on the quantum-field Hilbert space. In

3 Note that quite generally[g−,g−] ⊆ g+ so it’s automatic that[ζ ,∂t ] is proportional toη.
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general, Iso(AdSd+1) = SO(d,2) so in this case, we have a unitary representation of
SO(1,2)0. The latter is a noncompact, semisimple real Lie group, and thus it has no
finite-dimensional unitary representations, but a host of interesting infinite-dimensional
ones.

A Euclidean Reeh-Schlieder Theorem

We prove the Euclidean Reeh-Schlieder property for free theories on curved back-
grounds. It is reasonable to expect this property to extend to interacting theories on
curved backgrounds, but it would have to be established for each such model since it
depends explicitly on the two-point function.

The Reeh-Schlieder theorem guarantees the existence of a dense quantization do-
main based on any open subset ofΩ+. For this reason, one could use the Reeh-Schlieder
(RS) theorem with Nussbaum’s theorem [15] to construct a second proof of Theorem
6.2 under the additional assumption thatM is real-analytic.

Fortunately, our proof of Theorem 6.2 is completely independent of the Reeh-
Schlieder property. This has two advantages: we do not have to assumeM is a real-
analytic manifold and, more importantly, our proof of Theorem 6.2 generalizes imme-
diately and transparently to interacting theories as long as the Hilbert spaceH is not
modified by the interaction.

We state and prove this using the one-particle space; however, the result clearly
extends to the quantum-field Hilbert space.

Theorem A.1 Let M be a quantizable static space-time endowed with a real-analytic
structure, and assume that gab is real-analytic. LetO ⊂Ω+ andD =C∞(O)⊂ L2(Ω+).
ThenD̂⊥ = {0}.

Proof Let f ∈ L2(Ω+) with f̂ ⊥ D . Forx∈ Ω+, define

η(x) := 〈 f̂ , δ̂x〉H = 〈Θ f ,Cδx〉L2.

Real-analyticity ofη(x) follows from the real-analyticity of (the integral kernel of) C,
which in turn follows from the elliptic regularity theorem in the real-analytic category
(see for instance [1, Sec. II.1.3]). Now by assumption, for any g∈C∞

c (O), we have

0 = 〈ĝ, f̂ 〉H = 〈Θ f ,Cg〉L2(M).

Let g→ δx for x∈O. Then 0= 〈Θ f ,Cδx〉L2 ≡ η(x). Sinceη |O = 0, by real-analyticity
we infer the vanishing ofη onΩ+, completing the proof.
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4. J. Fröhlich. Unbounded, symmetric semigroups on a separable Hilbert space are
essentially selfadjoint.Adv. in Appl. Math., 1(3):237–256, 1980.
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