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Abstract We study space-time symmetries in scalar quantum field yh@oan arbi-
trary static space-time. We first consider Euclidean quariteld theory, and show that
the isometry group is generated by one-parameter subgrehieh have either self-
adjoint or unitary quantizations. We then show that the-adjbint semigroups thus
constructed can be analytically continued to one-paramugii¢ary groups, and using
this analytic continuation we construct a unitary représgon of the isometry group
of the Lorentz-signature metric. We illustrate our methodthe explicit example of
hyperbolic space, whose Lorentzian continuation is Aetitter space.

1 Introduction

The extension of quantum field theory to curved space-tinasddd to the discovery
of many qualitatively new phenomena which do not occur in gimepler theory on
Minkowski space, such as Hawking radiation; for backgroammdi historical references,
see [2, 6, 19].

The reconstruction of quantum field theory on a Lorentz-@figre space-time from
the corresponding Euclidean quantum field theory makes uSsterwalder-Schrader
(OS) positivity [16, 17] and analytic continuation. On awent background, there may
be no proper definition of time-translation and no Hamiltomithus, the mathemati-
cal framework of Euclidean quantum field theory may breakmlddowever, on static
space-times there is a Hamiltonian and it makes sense toedgefiolidean QFT. This
approach was recently taken by the authors [12], in whiclfuhdamental properties
of Osterwalder-Schrader quantization and some of the fuedéal estimates of con-
structive quantum field theotywere generalized to static space-times.

The previous work [12], however, did not address the armabdintinuation which
leads from a Euclidean theory to a real-time theory. In tlesent article, we initiate a

1 For background on constructive field theory in flat spacesinsee [8, 10].
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treatment of the analytic continuation by constructinganyi operators which form a
representation of the isometry group of the Lorentz-sigreaspace-time associated to
a static Riemannian space-time. Our approach is similgpiiit $o that of Frohlich [4]
and of Klein and Landau [14], who showed how to go from the HEeeln group to the
Poincaré group without using the field operators on flat sfiamae.

This work also has applications to representation theayt provides a natural
(functorial) quantization procedure which constructstnigial unitary representations
of Lie groups which arise as isometry groups of static, Loresignature space-times.
For example, when applied #d S, ;, our procedure gives a unitary representation of
SQ(d,2). Although very different in the details, this is reministefithe construction
of unitary representations through geometric quantingee for instance [9, 20]).

2 Classical Space-Time
2.1 Structure of Static Space-Times

Definition 2.1 A quantizable static space-times a complete, connected orientable
Riemannian manifoldM, gap) with a globally-defined (smooth) Killing fieldl which

is orthogonal to a codimension-one hypersurface M, such that the orbits of are
complete and each orbit intersecsexactly once.

Throughout this paper, we assume thais a quantizable static space-time. Defi-
nition 2.1 implies that there is a global time functibdefined up to a constant by the
requirement thaf = d/dt. ThusM is foliated by time-slice/;, and

M:§27UZUQ+

where the unions are disjoirf,= Mg, andQ.. are open sets corresponding te 0 and
t < O respectively. We infer existence of an isomerwhich reverses the sign of

6:Q. — Q; suchthatf?=1, 0|x =id.

Let C = (—A +n?)~! be the resolvent of the Laplacian, also called filee co-
variance wheren? > 0. ThenC is a bounded self-adjoint operator bf(M). For each
s€ R, the Sobolev spadds(M) is a real Hilbert space, defined as completioGB{M)
in the norm

If]2= (f.C™°f). (2.1)

The inclusionHs — Hg for k > 0 is Hilbert-Schmidt. Defineg” := Ns.oHs(M) and
"= UssoHs(M). Then
< C H (M) c .7

form a Gelfand triple, and” is a nuclear space.

Recall that¥”’ has a naturatr-algebra of measurable sets, caltgdinder set{see
for instance [7, 8, 18]). There is a unique Gaussian proltaliieasureu with mean
zero and covariandg defined on the cylinder sets i#f’ (see [7]).

More generally, one may consider a non-Gaussian, countatilitive measure
on.¥’ and the space

& = L3S p).
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We are interested in the case that the monomials of theAgrt) = @ (f1) ... @(f,) are
all elements o, and for which their span is densedh For an open se® C M, let&p
denote the closure i of the set of monomial&(®) = [; ®(fi) where suppfi) c Q
for all i. Of particular importance for Euclidean quantum field thyeigrthe positive-
time subspace

@er = @@Q+ .

2.2 The Operator Induced by an Isometry

Isometries of the underlying space-time manifold act on lbéit space of classical
fields arising in the study of a classical field theory. Fag C*(M) andy : M — M an
isometry, define

f¥ = (W Hf=foy™

Since detdy) = 1, the operatiorf — f¥ extends to a bounded operatorlén; (M) or
onL?(M). An extensive treatment of isometries for static spacesiappears in [12].

Definition 2.2 Let ¢y be an isometry, and @) = ®(f;)... ®(f,) € & a monomial.
Define the induced operator

F(WA = o(f1%)... o(f¥), (2.2)

and extend () by linearity to the dense domain of polynomialgin

3 Osterwalder-Schrader Quantization
3.1 Quantization of Vectors (The Hilbert Spa#é of Quantum Theory)

In this section we define the quantization map— #, where# is the Hilbert space
of quantum theory. The existence of the quantization mapseln a condition known
as Osterwalder-Schrader (or reflection) positivity. A @bitity measureu on cylinder
sets ins”’ is said to beaeflection positivef

/r(e)FF dy >0 3.1)

for all F in the positive-time subspaed C &. Let © =" (0) be the reflection 0@’
induced byf. Define the sesquilinear for(\,B) on &, x & as(A,B) = (0A B)¢.

Assumption 1 (O-S Positivity) Any measure d that we consider is reflection positive
with respect to the time-reflectiad.

Definition 3.1 (OS-Quantization)Given a reflection-positive measurg gthe Hilbert
spaces of quantum theory is the completion&f /.4 with respect to the inner prod-
uct given by the sesquilinear fortA, B). Denote the quantization mdp for vectors
&, — A byl (A) = A, and write

(AB)» = (AB)=(0AB)s for ABec&,. (3.2)
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3.2 Quantization of Operators

The basic quantization theorem gives a sufficient conditmmap a (possibly un-
bounded) linear operatdr on & to its quantization, a linear operatdron .. Con-
sider a densely-defined operafoon &, the unitary time-reflectio®, and the adjoint
T* = OT*0. A preliminary version of the following was also given in [11

Definition 3.2 (Quantization Condition I) The operator T satisfies QC-I if:

i. The operator T has a domai#(T) dense in8.
ii. There is a subdomaity C &, NZ2(T)N2(TT), for which%y C 7 is dense.
iii. The transformations T and T both map%j into &, .

Theorem 3.1 (Quantization 1) If T satisfies QC-I, then

i. The operators T% and T* | %, have quantization$ andT + with domainp.
ii. The operatorsi* = (T1%)" andT+ agree on.
iii. The operatorT | %, has a closure, namelj/**.

Proof We wish to define the quantizatidhwith the putative domaity by
TA=TA. (3.3)

For any vectoA € % and for anyB € (ZoN.#), it is the case thah = A+B. The

e

transformatioril is defined by (3.3) iffTA= T(A+B) = TA+ TB. Hence one needs
to verify thatT : 2N A" — 4, which we now do.

The assumptiory C 2(T™), along with the fact tha® is unitary, ensures that
O%y C 2(T*). Therefore for anyF € 2,

(OF,TB); = (T*OF,B)s = (O(OT*OF) B)s = (OT*F,B)s = (T'F,B)x .
(3.4)
In the last step we use the fact assumed in QC-Liii that 2y — &, yielding the
inner product of two vectors irt””. We infer from the Schwarz inequality i##’ that

(OF, TB)s| < | T*FI| » IIBll ,» = 0.

As (OF, TB)s = (F,TB)., this means thal B L %. As % is dense in#’ by QC-Lii,
we inferTB= 0. In other wordsTB € ./" as required to definé.
In order show thaZ, C 2(T*), perform a similar calculation to (3.4) with arbitrary
A € 9y replacingB, namely
(B, TA) v = (OF, TA; = (0 (OT*OF),A)p = (OTF,A)x = (THF,A) . (3.5)

The right side is continuous i € .7, and thereforé € 2(T*). Furthermorél *F =
T+F. This identity shows that if € .4/, thenT *F = 0. HenceT ™[ % has a quantiza-
tion T+, and we may write (3.5) as

TF=T'F, foral Fe %. (3.6)

In particularT* is densely defined sb has a closure. This completes the proof.
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Definition 3.3 (Quantization Condition II) The operator T satisfies QC-II if

i. Both the operator T and its adjoint‘Thave dense domairg(T), 2(T*) C &.
ii. There is a domairZy C &, in the common domainof T,TT*T,and TT".
iii. Each operator T, T, T*T, and TT" maps% into & .

Theorem 3.2 (Quantization Il) If T satisfies QC-II, then
i. The operators T% and T % have quantizationi‘ andT+ with domain@o.
ii. If A,B e %, one hagB,TA) ,» = (TTB,A) .

Remarks. A
i. In Theorem 3.2 we drop the assumption that the doriis dense, obtaining quan-

tizationsT andT+ whose domains are not necessarily dense. In order to comgens
for this, we assume more properties concerning the domaitherange ol ™ on &.

ii. As 7 need not be dense i, the adjoint off need not be defined. Nevertheless,
one calls the operatdr symmetridn case one has

(B,TA) ,» = (TB,A),», forall ABec %. (3.7)
iii. If $o T is a densely-defined extension®fthen$ = T+ on the domairdp.

Proof We define the quantizgtioﬁ with the putative domail¥. As in the proof of
Theorem 3.1, this quantizatidnis well-defined iff it is the case that: ZoN A" — 4.
For anyF € 29N .4/, by definition||F|| ,, = 0. Also

(TETF) 0, =(TETF)=(0TFTF), = (F,T'OTF), ,
where one uses the fact thgg € 2(T*T). Thus
(TRTF)»=(OF, T TF) = (FT'TF) .

Here we use the fact th@it" T maps%, to &.. Thus one can use the Schwarz inequality
on .77 to obtain X -
(TETF)r <||F|l,» IT*TF|,,=0.

HenceT : 9N A — A7, andT has a quantizatio'lﬁ with domain@o.

In order verify thatT | %, has a quantization, one needs to show fat %y N
AN C /. Repeat the argument above with replacingT. The assumptiom T+ :
Do — &4 yields forF € 29N A,

(TTETF) = (T*OF, TF)s = (OF, TT F)e = (E,TT F) .
Use the Schwarz inequality i#¢’ to obtain the desired result that
(TR T F)r < |FlLe ITTF |, = 0.

HenceT + has a quantizatioTI/Li\+ with domain@o, and forB € % one had tB=T'B.
In order to establish (ii), assume thaB € Z;. Then
(B TA) = (OB TA)s = (O(OT'0B),A)s = (OTB,A)s
= (T*B Ay = (T'B A . (3.8)

This completes the proof.



6 Arthur Jaffe and Gordon Ritter

3.3 Applications

The case of Euclidean symmetry frx) € M = RY was treated by Frohlich [4] and
Klein and Landau [14]. The generalization to arbitraryistatal-analytic space-times
is given in the following sections.

4 Structure of the Lie Algebra of Killing Fields

For the remainder of this paper we assume the following, Wwhicclearly true in the
Gaussian case as the Laplacian commutes with the isometnp Gr. (See also [12].)

Assumption 2 The isometry groups G that we consider leave the meaguriehri-
ant, in the sense that G has a unitary representatio@’on

4.1 The Representation gion &

Lemma 4.1Let G be an analytic group with Lie algebrg (i = 1,2), and letA : g3 —

g2 be a homomorphism. There cannot exist more than one andgtitomorphism
: G; — Gy for which drr= A. If Gy is simply connected then there is always one such
TT.

Let D = d/dt denote the canonical unit vector field BnLet G be a real Lie group
with algebrag, and letX € g. The mapgD — tX(t € R) is ahomomorphism of Li&R) —
g, SO by the Lemma there is a unique analytic homomorpligmR — G such that
déx(D) = X. Conversely, if is an analytic homomorphism & — G, and if we let
X =dn(D), itis obvious that) = éx. ThusX — &x is a bijection ofg onto the set of
analytic homomorphisniR — G. The exponential map is defined by éXp := éx(1).
For complex Lie groups, the same argument applies, regl@&ivith C throughout.

Sinceg is connected, so is ex). Hence expy) C G, whereGP denotes the con-
nected component of the identity @ It need not be the case for a general Lie group
that exgg) = GP, but for a large class of examples (the so-cad&donential groups
this does hold. For any Lie group, ) contains an open neighborhood of the identity,
so the subgroup generated by éxpalways coincides witlG°.

We will apply the above results wits = Iso(M), the isometry group oM, and
g =Lie(G) the algebra of global Killing fields. Thus we have a bijectteerespondence
between Killing fields and 1-parameter groups of isometfidéss correspondence has
a geometric realization: the 1-parameter group of isoretri

@ = & (9) = exp(sX)

corresponding tX € g is the flow generated bx.
Consider the two different 1-parameter groups of unitagrafors:

1. the unitary grouge: onL?(M), and
2. the unitary group (¢) oné&'.
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Stone’s theorem applies to both of these unitary groupsell ylensely-defined self-
adjoint operators on the respective Hilbert spaces.

In the first case, the relevant self-adjoint operator is §mam extension of-iX,
viewed as a differential operator @F (M). This is because fof € CZ(M) andp € M,

we have: g
Xpf = (ZF)(p) = 3 f(®(P)ls—o.

Thus —iX is a densely-defined symmetric operator lci{M), and Stone’s theorem
implies that—iX has self-adjoint extensions.

In the second case, the unitary gralifgs) on & also has a self-adjoint generator
I" (X), which can be calculated explicitly. By definition,

5 () “j qo(fi)} - |j O (fio@s).

Now replaces — —s and calculatel /dgs—o applied to both sides of the last equation
to see that

r(X)[ﬁcp(fi)] - icp(fl)...cp(—inj)cp(le)...aa(fn).
i= j=

One may check thdt is a Lie algebra representationgfi.e.” ([X,Y]) = [ (X), (Y)].

4.2 A Direct Sum Decomposition gf

For each€ € g, there exists some dense domairion whichl™ () is self-adjoint, as

discussed previously. However, the quantizatiﬁ(\é) acting onz#Z may be hermitian,
anti-hermitian, or neither depending on whether theresaldelation of the form

r)e==+0r(), (4.1)

with one of the two possible signs, or whether no such reidimds.

Even if (4.1) holds, to complete the construction of a ugit@presentation one
must prove that there exists a dense domaiwziron which the quantizatio8 is self-
adjoint or skew-adjoint. This nontrivial problem will be @lewith in a later section
using Theorems 3.1 and 3.2 and the theory of symmetric laaigroups [13, 4].
Presently we determinghichelements withiry satisfy relations of the form (4.1).

Letd := 6%, and define a linear operatof : g — g by

T (X) :=9XI. (4.2)

From (4.2) it is not obvious that the range 6f is contained ing. To prove this, we
recall some geometric constructions.
LetM,N be manifolds, lety : M — N be a diffeomorphism, and € Vect(M). Then

Y XY =X(o)oy L. (4.3)
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defines an operator d@”(N). One may check that this operator is a derivation, thus
(4.3) defines a vector field dd. The vector field (4.3) is usually denoted

l,U*X = dl.l_l(xwfl(p))

and referred to as theush-forwardof X.

We now wish to show thag = g @ g_, whereg.. are thet1-eigenspaces of’ .
This is proven by introducing an inner product gmvith respect to which7 is self-
adjoint. LetK be a nonempty compact subsetbf Endowg with the inner product

(XY= [ (x.Y)au (4.4)

where(, ) is the metric orM anddvis the Riemannian volume measure. Since elements
of g are smooth vector fields, the functi@X, Y) is smooth, hence bounded on any
compact seK. Thus(X,Y)k is defined for allX,Y € g.

Theorem 4.1Considerg as a Hilbert space with inner produ¢t.4). The operator
T : g — gis self-adjoint withZ2 = |; hence

g=9g+Dg- (4.5)

as an orthogonal direct sum of Hilbert spaces, whgreare the+1-eigenspaces of’.
Further, & € g_ (hencedim(g_) > 1). Elements of)_ have hermitian quantizations,
while elements af ;. have anti-hermitian quantizations.

Proof Write (4.2) as
T(X)=06"1X0"=0,X. (4.6)

Thus.7 is the operator of push-forward 8. The push-forward of a Killing field by
an isometry is another Killing field, hence the range%fis contained ing. Also, .7
must have a trivial kernel sinc&? = I, and this implies tha? is surjective. It follows
from (4.6) that7 is a Hermitian operator o Hence7 is diagonalizable and has real
eigenvalues which are square roots of 1. This establisleedebomposition (4.5). That
elements ofi_ have hermitian quantizations, while elementg pthave anti-hermitian
guantizations follows from Theorem 3.1.

One must not be tempted to speculate tfpatconsists only ofg;. In particular,

dim(g_) =2 forM = H,.

5 G is generated by reflection-invariant and reflected isometes

Let G = Iso(M) denote the isometry group &, as above. The@® has aZ, subgroup
containing{1, 8}. This subgroup acts 06 by conjugation, which is just the action
Y — b := ByYo. Conjugation is an (inner) automorphism of the group, so

(pe)? =yPe®, (W) t=@™°
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Definition 5.1 We say thaty € G isreflection-invariant if
Y° =y,
and thaty is reflectedif
Y=yt
Let Gg| denote the subgroup of G consisting of reflection-invarigatnents, and let
Gr denote the subset of reflected elements.

Example 5.1 et z= x+ it be a coordinate oM = R?; then time-reflection is complex
conjugation, and rotations in tha-plane are reflected isometries. Defilg = z+ w.
SinceTyz = Z+w = Tyz it follows Ty is reflection-invariant ifw is real, reflected ifv
is pure imaginary, and otherwise it is neither.

Note thatGg is the stabilizer of th&, action, hence a subgroup. Alsgg is closed
under the taking of inverses and does contain the identitythe product of two re-
flected isometries is no longer reflected unless they comr@geerally, the product of
an element oGg with an element of5g, is neither an element @g nor of Gg,. Thus
we have:

{1, 9} C GRUGR| ¢ G.
Although it is not true thaG = GRU Gpy, it is true that the identity component &fis
generated bzrU G-

Theorem 5.1Let G’ denote the connected component of the identity in G. TReis G
generated by U Gg;.

Proof Sinceg = g+ ® g as a direct sum of vector spaces (though not of Lie algebras),

we have
GO = (exp(g)) = (expla+) Uexp(g-)).
Choose base& + j}i—1,. n. for g+ respectively. Then we have:

G? = ({exp(sé;,):1<i<ny,seR}u{expsé_j):1<j<n_,seR}).

Furthermore, ex@é_ ) is reflected, while ex{®¢. ;) is reflection-invariant, as we now
prove. Fixé.: € g+, and note that

g+(s) ;= Oexp(sé+ )0
is a one-parameter group of isometries, heqcés) corresponds to a unique element
of g. This element is clearly é.3, and sincel. € g+, we infer that3&é.d = +&..
Therefore
exp(isfi) = qi(s) = Gexp(séi)e.
In particularU (s) = exp(sé_) satisfies the relatiofU (s) = U (s) 719, i.e. exgsé_) is
reflected. Similarly, exs&. ) is reflection-invariant.

Corollary 5.1 The Lie algebra of the subgroupgGis g.. In particular, g, is a Lie
subalgebra ofy.

To summarize, the isometry group of a static space-time beaya be generated
by a collection ofn (= dimg) one-parameter subgroups, each of which consists either
of reflected isometries, or reflection-invariant isometrigach of these one-parameter
subgroups is null-invariant
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6 Construction of Unitary Representations
6.1 Self-adjointness of semigroups

In this section, we recall several results on self-adja@stof semigroups. Roughly
speaking, these results imply that if a one-parameter je®ibf unbounded symmetric
operators satisfies a semigroup condition of the f8x8; = S, , g, then under suitable
conditions one may conclude essential self-adjointness.

A theorem of this type appeared in a 1970 paper of Nussbaupnvih® assumed
that the semigroup operators have a common dense domaireSiiewas rediscovered
independently by Frohlich, who applied it to quantum fiddddry in several important
papers [5, 3]. For our intended application to quantum fiekbty, it turns out to be
very convenient to drop the assumption tHat such that thes, all have a common
dense domain foo | < a, in favor of the weaker assumption thag .o D(Sy) is dense.

A generalization of Nussbaum'’s theorem which allows the gios of the semi-
group operators to vary with the parameter, and which ortyires theunion of the
domains to be dense, was later formulated and two indepépd=ofs were given: one
by Frohlich [4], and another by Klein and Landau [13]. Thigdaalso used this theorem
in their construction of representations of the Euclidessug and the corresponding
analytic continuation to the Lorentz group [14].

In order to keep the present article self-contained, we diefine symmetric local
semigroups and then recall the refined self-adjointness¢ne of Frohlich, and Klein
and Landau.

Definition 6.1 Let.s# be a Hilbert space, let T 0 and for eacho € [0,T], let S, be a
symmetric linear operator on the doma#y, C 57, such that:

() Yo > Zgita<pBand? :=Upcq<t Za is denseini?,
(i) a — S is weakly continuous,
(i) So=1,S3(%a) C Dq_pfor0<B<a<T,and
(V) SuSg = Sy ON P4 fora,B,a+ B € [0,T].

In this situation, we say thdSy, 24, T) is asymmetric local semigroup

Itis important that?, is notrequired to be dense ¢’ for eacha; the only density
requirementis (i).

Theorem 6.1 ([13, 4])For each symmetric local semigrodfy, Z4,T), there exists a
unique self-adjoint operator A such tRat

P CD(e %) and § =€ 4|y, forall a €[0,T].

Also, A> —cif and only if||Sy f|| < €| f| forall f € Dy andO< a < T.

2 The authors of [4, 13] also showed that
7:= | [ U SB(@a)], where 0< S<T,
0<a<S 0<B<a

~

is acorefor A, i.e. (A, 2) is essentially self-adjoint.
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6.2 Reflection-Invariant Isometries

Lemma 6.1Let  be a reflection-invariant isometry and assump € Q. such that
Y(p) € Q.. Theny preserves the positive-time subspace, €0 ) C Q.

Proof Note thaty(X) C X, for if not then choosg € 5 with @(p) ¢ =. Without loss
of generality, assumgy(p) € Q. ThusQ.. containg6y0)(p) = By (p) € Q_, acon-
tradiction sinceQ_N Q. = 0. We used the fact that = id on . Hencey restricts
to an isometry of. It follows that the restriction ofy to M \ X is also an isometry.
HoweverM\ = = Q_ LI Q. , wherel denotes the disjoint union. Therefafg Q. ) is
wholly contained in eithef2, or Q_, as the alternative would violate continuity. The
possibility thaty(Q,) C Q_ is ruled out by our assumption.

Lemma 6.1 has the immediate consequence théadfg then the one-parameter
group associated ®is positive-time-invariant. This result plays a key roletie proof
of Theorem 6.2.

6.3 Construction of Unitary Representations

The rest of this section is devoted to proving that the th@brgymmetric local semi-
groups can be applied to the quantized operatorsororresponding to each of a set
of 1-parameter subgroups 6f= Iso(M). We proceed in two steps. The first step is to
show that the 1-parameter subgroups of interest define impgiEn.7Z’; for this we use
Theorems 3.1, 3.2 and 6.1.

Theorem 6.2Let (M, gqp) be a quantizable static space-time. léebe a Killing field
which lies ing or g_, with associated one-parameter group of isomet{i@s} g ck-
Then there exists a densely-defined self-adjoint opergtam’#” such that

{e“Af, if Ecg_

dif if Eeg,.

r ()=
Proof First suppose thad € g_, which implies that the isometries;, are reflected, and
sol (@) =T (¢). Define
Qéﬂ:::@;1“2+)

For sufficiently smallr, Q¢ 4 is a nonempty open subset@f,, and moreover, as
a — 0", Qg 4 increases to fill2 with Q; o = Q,. These statements follow imme-
diately from the fact thaip, (p) is continuous with respect , andg, is the identity
map.

Since @ (Q¢ o) € Q4, we infer thatl” (@u)ég, , € &4 By Theorem 3.2[ (¢u)
has a quantization which is a symmetric operator on the domai

‘@f,a =1 (éaQE,a)'

Fix some positive constaatwith Qs , nonempty. Note that

U Qa=02 = | éo,, =6

O<a<a O<a<a
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It follows that
= U Za

O<a<a

is dense in77. This establishes condition (i) of Definition 6.1, and thiestconditions
are routine verifications. Theorem 6.1 implies existenca sélf-adjoint generataks
such that

f((pa):exp(—aAf) forall a €]0,a].

This proves the theorem in caes g_.
Now suppose thaf € g, implying that the isometrieg, are reflection-invariant,
and

(@) =T (@) =T (¢q) On &.
Lemma 6.1 implies thaf (@ )& C &:. By Theorem 3.1[ (¢ ) has a quantization
I" (@) which is defined and satisfies
@) =F (@)™

on the domair1 (&%), which is dense i’ by definition. In this case we do not need

Theorem 6.1; for each, f((pa) extends by continuity to a one-parameter unitary group
defined on all of7Z (not only for a dense subspace). By Stone’s theorem,

I (gn) = expliaAs)

for As self-adjoint and for altr € R. The proof is complete.

7 Analytic Continuation

Each Riemannian static space-tii, gap) has a Lorentzian continuatidve,, which
we construct as follows. In adapted coordinates, the mgfgion M takes the form

ds = .7 (X)dt® + Gy (X)dxHdX’. (7.1)

The analytic continuatioh — —it of (7.1) is standard and gives a metric of Lorentz
signaturedsor = —.Z dt?+ % dx2, by which we define the Lorentzian space-tilg;.
Einstein’s equation Rigc= kg is preserved by the analytic continuation, but we do not
use this fact anywhere in the present paper.

Let {Ei(i> :1<i<ny} be bases of., respectively. LeAi(i) = A»f‘i) be the self-
adjoint operators constructed by Theorem 6.2. Let '
Ui(i>(a) = exp(iaAi(i>), for 1<i<ng (7.2)

be the associated one-parameter unitary groups.
We claim that the group generated by the n, +n_ one-parameter unitary groups
(7.2) is isomorphic to the identity component of

Gior := I1S0(Mior),
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the group of Lorentzian isometries. Since locally, the gretructure is determined by
its Lie algebra, it suffices to check that the generatorsfyatiie defining relations of

gior .= Lie(Gor).
Since quantization of operators preserves multiplicatienhave
X,Y,Zeg, [X,Y]=Z2 = [[(X),[(Y)]=I(2). (7.3)

In what follows, we will use the notatiogy. for {I"(X): X € g+ }, etc.

Quantization converts the elementsgof from skew operators into Hermitian op-
erators; i.e. elements @f. are Hermitian oy and hence, elements igf_ are skew-
symmetric on”. Thusg, @ig_ is a Lie algebra represented by skew-symmetric op-
erators on?.

Theorem 7.1We have an isomorphism of Lie algebras:

Glor = ﬁ+®i§,. (7.4)

Proof Let M¢ be the manifold obtained by allowing theoordinate to take values in
C. Definey : Mg — Mc byt — —it. Thengq, is generated by

(&N 1zien, ULNjhicjzn.,  where nji= itll*(fj(f))-
It is possible to define a set of real structure constégtsuch that
() (N _ e g
(& & 1= figd (7.5)
K=1
Applying ¢* to both sides of (7.5), the commutation relationggf are seen to be

i, njl = _fijkfk(ﬂa (7.6)

together with the same relations f@r as before. Now (7.3) implies that (7.6) are the
precisely the commutation relations@f & ig_, completing the proof of (7.4).

Corollary 7.1 Let (M, gap) be a quantizable static space-time. The unitary gro@p2)
determine a unitary representation ofig on 7.

8 Hyperbolic Space and Anti-de Sitter Space

Consider Euclidean quantum field theoryMn= HY. The metric is
d
d =r"2 Zld&?,
i=
where we define = xd for convenience. The Laplacian is

d
Ay :(Z—d)rE—HZARd. (8.1)
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Fig. 1 Flow lines of the Killing field{ = (tzfrz)dt +2tr & onHY.

Thed — 1 coordinate vector fieldsd/dx : i # d} are all static Killing fields, and any
one of the coordinated (i # d) is a satisfactory representation of time in this space-
time. It is convenient to defirtle= x! as before, and to identifywith time.

The time-zero slice iMy = H9 1. From

HY = {ve R | (v,v) = —1,vp > 0}

it follows that Ison{H®) = O* (d, 1) and the orientation-preserving isometry group is
SOf(d, 1).

For constant curvature spaces, one may solve Killing’s gopuatk g = 0 explicitly.
Let us illustrate the solutions and their quantizationsifer 2. The three Killing fields

E=0&, N=to+rd, {=({>—r?)q+2ro (8.2)

are a convenient basis fgr Any d-dimensional manifold satisfies dgn< d(d +1)/2,
manifolds saturating the bound are said tonbeximally symmetricandH¢ is maxi-
mally symmetric.

Now, é f(—t) = —f/(—t) S04 © = —O4, henced, € g_. Similar calculations show
[@,n] =0and®{ = —{0O. Thusn spansg,, while é;,{ spang_. The commutation
relations for g are:

n.{1=4¢, [n.é&]=-a&, [{,&]=-2n.

The flows associated to (8.2) are easily visualizZgds a right-translation, ang
flow-lines are radially outward from the Euclidean origitelflows of{ are Euclidean
circles, indicated by the darker lines in Figure 1. It follthat the flows ofp are
defined on all o8, , while the flows ofZ are analogous to space-time rotation&f
and hence, must be defined on a wedge of the form

Wy = {(t,r) : t,r >0, tan (r/t) < a}.

The simple geometric idea of Section 6.2 is nicely confirnrethis case: the flows of
n (the generator ofi, ) preserve thé = 0 plane, and are separately isometrie€of
andQ_.

Corollary 7.1 implies that the procedure outlined abovergsfia unitary represen-
tation of the identity component of 168dS) on the quantum-field Hilbert space. In

3 Note that quite generalllg_,g_] C g, so it's automatic thafi, ] is proportional tar.
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general, IspAdS;;1) = SO(d,2) so in this case, we have a unitary representation of
SQ(1,2)o. The latter is a noncompact, semisimple real Lie group, and it has no
finite-dimensional unitary representations, but a hosttafresting infinite-dimensional
ones.

A Euclidean Reeh-Schlieder Theorem

We prove the Euclidean Reeh-Schlieder property for freerthe on curved back-
grounds. It is reasonable to expect this property to exteridtéractingtheories on
curved backgrounds, but it would have to be establisheddoh such model since it
depends explicitly on the two-point function.

The Reeh-Schlieder theorem guarantees the existence ofse deantization do-
main based on any open subsefXf. For this reason, one could use the Reeh-Schlieder
(RS) theorem with Nussbaum'’s theorem [15] to construct arsg@roof of Theorem
6.2 under the additional assumption thats real-analytic.

Fortunately, our proof of Theorem 6.2 is completely indejent of the Reeh-
Schlieder property. This has two advantages: we do not lmesdumeM is a real-
analytic manifold and, more importantly, our proof of Thewwr6.2 generalizes imme-
diately and transparently to interacting theories as Iatha Hilbert space? is not
modified by the interaction.

We state and prove this using the one-particle space; hawineresult clearly
extends to the quantum-field Hilbert space.

Theorem A.1Let M be a quantizable static space-time endowed with aaealytic
structure, and assume thaggs real-analytic. LetV C Q, and2 =C®(0) C L2(Q..).
ThenZ+ = {0}.

Proof Let f € L2(Q) with f 1 2. Forxe Q., define
nx) = (f, &) = (OF,C8),2.

Real-analyticity ofrj (x) follows from the real-analyticity of (the integral kernd) &,
which in turn follows from the elliptic regularity theorem the real-analytic category
(see for instance [1, Sec. 11.1.3]). Now by assumption, for@e Cz' (&), we have

0=1(§, f).r = (©F,CO20m)-

Letg— & forxe &. Then 0= (O f,Cd) 2 = n(x). Sincen|, = 0, by real-analyticity
we infer the vanishing ofy on Q, completing the proof.
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