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STOCHASTIC PDE, REFLECTION POSITIVITY
AND QUANTUM FIELDS

By Arthur Jaffe

We outline some known relations between classical random fields
and quantum fields. In the scalar case, the existence of a quantum
field is equivalent to the existence of a Euclidean-invariant, reflection-
positive (RP) measure on the Schwartz space tempered distributions.
Martin Hairer recently investigated random fields in a series of in-
teresting papers, by studying non-linear stochastic partial differen-
tial equations, with a white noise driving term. To understand such
stochastic quantization, we consider a linear example. We ask: does
the measure on the solution induced by the stochastic driving term
yield a quantum field? The RP property yields a general method to
implement quantization. We show that the RP property fails for fi-
nite stochastic parameter λ, although RP does hold in the limiting
case λ =∞.

1. Introduction. We outline the relation between classical random
fields and quantum fields. In the scalar case, the existence of a quantum field
is equivalent to the existence of a Euclidean-invariant, reflection-positive
measure (RP) on tempered distributions on space-time. We review some
results in constructive quantum field theory, and their relation to the devel-
opment of renormalization group methods.

Martin Hairer recently investigated random fields in a series of interesting
papers, by studying non-linear stochastic partial differential equations with
a white noise driving term. To understand properties of such stochastic
quantization, we consider an elementary example—the massive free (linear)
Euclidean field—and the corresponding family of Gaussian measure dµλ.
Here λ denotes the stochastic parameter.

We ask: does the measure dµλ on random fields yield a corresponding
quantum field? The RP property enables the standard method to obtain a
quantization. In §3 we demonstrate that the RP property fails for λ < ∞,
although it holds in the limiting case λ = ∞. We raise the question in §4
of how one would approximate dµλ in the non-linear case in order to obtain
an approximation that preserves RP.

1.1. The Free Euclidean Field. The free relativistic quantum field ϕ(x) is
a Wightman field on a Fock-Hilbert space H. It arises from the Osterwalder-
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Schrader quantization of the Gaussian measure dµC(Φ) with characteristic
function

(1.1) SC(f) = e−
1
2〈f̄ ,Cf〉L2 , where C = (−∆ +m2)−1 .

Here space-time is d-dimensional, and one requires m2 > 0 if d = 1, 2. This
field was introduced by Kurt Symanzik [27] as a random field and studied
extensively in the free-field case by Edward Nelson [20], and later by many
others. It is well-understood that such a random field is equivalent to a
classical field acting on a Euclidean Fock space E with no-particle state
ΩE , see for example [12]. In terms of annihilation and creation operators
satisfying [A(k) , A(k′)∗] = δ(k − k′), one has

(1.2) Φ(x) =
1

(2π)d/2

∫
(A(k)∗ +A(−k))

1

(k2 +m2)1/2
eikxdk .

In this framework the field has a Gaussian characteristic functional

(1.3) SC(f) =
〈

ΩE , eiΦ(f)ΩE
〉
E

=

∫
S′
eiΦ(f)dµC(Φ) .

Nelson’s Markov field construction is not sufficiently robust to work for
non-Gaussian examples, for the global Markov property required in Nelson’s
construction has never been established for the known interacting field the-
ories. Furthermore random Markov fields are tied to classical probability
theory, and so they do not accommodate a theory of fermions.

Konrad Osterwalder and Robert Schrader solved this problem in 1972
when they discovered the fundamental reflection positivity property, [24, 25].
This construction is so simple and beautiful, it should be a part of every
book on quantum theory. Unfortunately that must wait for a number of new
books to be written!

1.2. Reflection Positivity and Osterwalder-Schrader Quantization. The
connection of dµC(Φ) to quantum field theory is given through its property
of reflection-positivity. There is a similar property for fermion fields and for
gauge fields, as well as for fields of higher spin. So reflection positivity can
be formulated to connect all known quantum theories with corresponding
classical ones.

One identifies a time direction t for quantization, and writes x = (t, ~x). Let
ϑ : (t, ~x) 7→ (−t, ~x) denote time reflection, and Θ its push forward to S ′(Rd).
Then RP requires that for A(Φ) an element of the polynomial algebra E+

generated by random fields Φ(f) with f ∈ S(Rd+), one has

(1.4) 0 6 〈A,A〉H = 〈A,ΘA〉E .
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Let N denote the null space of this positive form and E+/N the space of
equivalence classes differing by a null vector. The Hilbert space of quantum
theory H is the completion of the pre-Hilbert space E+/N , in this inner
product. The vectors in H are called the OS quantization of vectors in E+.
Operators T acting on E+ and preserving N , also have a quantization T̂ as
operators on H, defined by T̂ Â = T̂A. This is summarized in the commuting
exact diagram of Figure 1.

0

��

0

��
N T //

Id

��

N

Id

��
E+

T //

∧
��

E+

∧
��

E+/N
T̂ //

��

E+/N

��
0 0

Fig 1. OS Quantization of Vectors [A] ∈ E+/N 7→ Â, and of Operators T 7→ T̂ .

1.3. Non-Gaussian Examples. Many families of non-Gaussian measures
dµ(Φ) on S ′(Rd) that are Euclidean-invariant and reflection-positive are
known. The first examples were shown to exist in space-time of two dimen-
sions, d = 2, by Glimm and Jaffe [6, 7, 8, 9], and Glimm, Jaffe, and Spencer
[13, 14, 15, 16]. Additional examples were given by Guerra, Rosen, and Si-
mon [5] and others..

In the more difficult case of d = 3 space-time dimensions, the only com-
plete example known is the Φ4

3 theory. Glimm and Jaffe proved that in
a finite volume, a reflection-positive measure exists for all couplings [10].
They showed that one has a convergent sequence of renormalized, approxi-
mating action functionals An whose exponentials e−An when multiplied by
the standard Gaussian measure dµC(Φ) converge weakly. But the limit is
inequivalent to the Gaussian. This limit agrees in perturbation theory with
the standard perturbation theory in physics texts for ϕ4

3. The physics re-
sult established in this paper is that the renormalized ϕ4

3 Hamiltonian H
in a finite spatial volume is bounded from below. Joel Feldman and Oster-
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walder combined the stability result of [10] with a modified version of the
cluster expansions for Euclidean fields [13], to obtain a Euclidean-invariant,
reflection-positive measure on R3 for small coupling [3].

The original stability bound paper [10] took several years to finish. In
that paper we developed a method to show stability in a region of a cell in
phase space of size O(1), and to show independence of different phase space
cells, with a quantitative estimate of rapid polynomial decay in terms of
a dimensionless distance between cells. This analysis allowed us to analyze
partial expectation of degrees of freedom associated with the phase cells.

It turned out that the ideas we used overlap a great deal with the “renor-
malization group” methods developed by Kenneth Wilson [28], which ap-
peared while we were still developing our non-perturbative methods for con-
structive QFT. One major difference in Wilson’s approach, and what makes
it so appealing, is that his methods are iterative. Our original methods were
inductive, using a somewhat different method on each length scale. Wilson
achieved this simplicity by ignoring effects which appeared to be small.

While many persons have attempted to reconcile these two methods,
much more work needs to be done. In spite of qualitative advances, the
conceptually-simpler renormalization group methods have not yet been used
to establish the physical clustering properties, that were proved earlier using
the inductive methods. The most detailed studies of Φ4

3 using the renormal-
ization group methods have been carried out by Brydges, Dimock, and Hurd
[1, 2]. My undergraduate student David Moser gave a nice exposition and
also some refinements [23].

2. The Stochastic PDE Approach to the Free Field. The idea
of quantization through SPDE goes back to Edward Nelson [20, 22] and
Parisi-Wu [26]. Recently Martin Hairer reinvestigated these questions and
has made substantial progress [17, 18], as well as in his many other recent
works on the ArXiv. The most interesting case is his new look at the Φ4

3

measure.
In this work we consider only the Gaussian case corresponding to the

massive free field. Our goal is to understand more about the method, and
the relation between SPDE and relativistic quantum field theory. Let ∆ =∑d

j=1
∂2

∂x2j
denote the Laplacian on Rd, where the Laplacian involves the

Euclidean space-time coordinates ~x = (x1, . . . , xd−1) and a time coordinate
xd = t. The SPDE also involves the auxiliary stochastic parameter λ ∈ R+.
The field Φλ(x) satisfies the fundamental equation

(2.1)
∂Φλ(x)

∂λ
= −1

2
(−∆ +m2)Φλ(x) + ξλ(x) ,
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where ξλ(x) is white noise. In other words, ξλ(x) has a Gaussian probability
distribution with mean zero and with covariance δ(λ − λ′)δ(x − x′). Let
dνλ(ξ) denote this Gaussian measure.

The solutions Φλ(x) to the fundamental SPDE have a distribution dµλ(Φλ)
corresponding to the measure dνλ(ξ). The distribution dµλ(Φ) is Gaussian.
It is claimed that

(2.2) dµC(Φ) = lim
λ→∞

dµλ(Φ) .

In this section we verify the form of dµλ and its λ→∞ limit.

2.1. The Classical Heat Kernel. Let Kλ(x, x′) denote the heat kernel for
the related equation, namely the integral kernel of the linear transformation

e−
λ
2 (−∆+m2). In other words the kernel Kλ(x, x′) satisfies the equation

(2.3)
∂

∂λ
Kλ(x, x′) =

1

2

(
∆−m2

)
Kλ(x, x′) ,

with initial data

(2.4) K0(x, x′) = lim
λ→0+

Kλ(x, x′) = δ(x− x′) .

Given f(x), define fλ(x) for 0 < λ as

(2.5) fλ(x) =

∫
Rd

Kλ(x, x′) f(x′) dx′ =
(
e−

λ
2 (−∆+m2) f

)
(x) ,

which is a solution to the homogeneous equation for 0 < λ

(2.6)
∂fλ(x)

∂λ
= −1

2

(
−∆ +m2

)
fλ(x) ,

with initial data f . The corresponding inhomogeneous equation arises if one
is given a forcing term ξλ(x) and desires to solve the equation

(2.7)
∂fλ(x)

∂λ
= −1

2

(
−∆ +m2

)
fλ(x) + ξλ(x) .

The solution with initial data f(x) at λ = 0 is

(2.8) fλ(x) =

∫
Rd
dx′ Kλ(x, x′) f(x′) +

∫ λ

0
dα

∫
Rd
dx′ Kλ−α(x, x′) ξα(x′) .
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2.2. The Random Field Solution to the SPDE. For each given ξλ(x) the
solution to the fundamental equation (2.1) with initial data Φ0(x) is given
by (2.8) as

(2.9) Φλ(x) =

∫
Rd

Kλ(x, x′)Φ0(x′)dx′ +

∫ λ

0
dα

∫
Rd
dx′ Kλ−α(x, x′)ξ(x′) .

Since this solution is linear in ξ, it is clear that the Gaussian distribution of
ξ will yield a Gaussian distribution of Φλ.

2.2.1. First Moment. As ξλ has mean zero, and dνλ(ξ) is a probability
measure, the first moment of Φλ(x) equals

(2.10) 〈Φλ(x)〉νλ =

∫
Φλ(x) dνλ(ξ) =

∫
Rd
dx′ Kλ(x, x′)Φ0(x′) .

One could also write

(2.11) 〈Φλ(x)〉νλ =
(
e−

λ
2 (−∆+m2) Φ0

)
(x) .

It is desirable to have the mean of dµλ(Φ) to be zero. So we assume that
Φ0 = 0. Then 〈Φλ(x)〉νλ = 0. Otherwise we subtract the mean to obtain
this result. On the other hand, it is clear that in the λ → ∞ limit the
mean (2.11) will tend to zero. Thus the initial data will be wiped out in
the limiting distribution, and whether or not we start with mean zero, we
obtain mean zero in the limit.

2.2.2. Second Moment. The second moment of Φλ(x) at a given λ defines
the covariance Dλ of the distribution. We claim that covariance for Φλ(x) is

(2.12) Dλ = (I − e−λC−1
)C .

If one considers the action of Dλ as a transformation on L2, then the self-

adjoint, positive transformation (−∆+m2) > m2, yields
∥∥∥e−λC−1

∥∥∥ 6 e−λm
2
.

One infers that

(2.13) 0 6 Dλ ,

so Dλ is a bone-fide covariance.
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To show that Dλ has the form claimed, calculate

Dλ(x, y) = 〈Φλ(x) Φλ(y)〉νλ =

∫
Φλ(x) Φλ(y)dνλ

=

∫ λ

0
dα

∫ λ

0
dβ

∫
Rd
dx′
∫
Rd
dy′ Kλ−α(x, x′)Kλ−β(y, y′)

〈
ξα(x′)ξβ(y′)

〉
νλ

=

∫ λ

0
dα

∫ λ

0
dβ

∫
Rd
dx′
∫
Rd
dy′ Kλ−α(x, x′)Kλ−β(y′, y) δ(α− β) δ(x′ − y′)

=

∫ λ

0
dα K2(λ−α)(x, y)

=
(
I − e−λC−1

)
C(x, y) ,(2.14)

as claimed. Here we use the symmetry and multiplication law for the semi-
group e−λC

−1
with integral kernel Kλ(x, y).

It is clear that Dλ(x, y) has the same local singularity on the diagonal as
C(x, y), for the difference

(2.15) C(x, y)−Dλ(x, y) =
(
e−λ(−∆+m2)C

)
(x, y)

is the Fourier transform of a multiple of e−λ(k2+m2)
(
k2 +m2

)−1
. So it is an

element of Schwartz space for every 0 < λ.

2.2.3. General Moments. It follows from the Gaussian property that the
odd moments of dµλ(Φ) vanish, and that the even moments yield

(2.16) Sλ(f) =
〈
eiΦλ(f)

〉
νλ

= e−
1
2〈f̄ ,Dλf〉L2 .

2.3. The Limit λ→∞. The measure dµλ is a Gaussian on S ′(Rd), with
mean 0 and covariance (2.12). Under what conditions does this family of
Gaussian measures converge to a limiting measure dµ as λ → ∞? This
question is answered in [4], and a sufficient condition for convergence is the
convergence Dλf → Cf in the topology of the Schwartz space S for every
f ∈ S.

It is clear that in the sense of the weak limit of operators on S(Rd), the
operators e−λC

−1
C converge in the S topology to zero as λ → ∞. As a

consequence Dλ →S C and as the weak limit of measures
(2.17)

lim
λ→∞

Sλ(f) = SC(f) = e−
1
2〈f̄ ,Cf〉L2 , and lim

λ→∞
dµλ(Φ) = dµC(Φ) .



8 ARTHUR JAFFE

3. The Measure dµλ is Not Reflection Positive.

3.1. RP for the Gaussian with Covariance Dλ. For a Gaussian measure
dµλ(Φ) with covariance Dλ, it is well known that the RP property (1.4)
for dµλ is equivalent to RP for the covariance Dλ, see for example [12].
The RP property for Dλ on Rd+, with respect to time reflection ϑ means:
for each function f ∈ L2(Rd+) supported in the positive-time half-space
Rd+ = Rd−1 × R+,

(3.1) 0 6 〈f, ϑDλf〉L2(Rd) .

This form defines the pre-inner product on the one-particle space L2(Rd+) as

(3.2) 〈f, f〉H = 〈f, ϑDλf〉L2(Rd) .

(Note that RP of a covariance on Rd ensures RP on various compactified
space-times, such as RP on the torus Td [19].)

It is also well-known that C = (−∆ + m2)−1 is reflection positive with
respect to ϑ. This can be verified on Rd by analysis of the Fourier transform.
On subdomains of Rd, or in other geometries, it is convenient to note the
equivalence between RP for C and the monotonicity of covariance operators
CD 6 CN with Dirichlet and with Neumann boundary data on the reflection
plane [11].

In general one cannot expect to recover the reflection-positivity property
without preserving positivity in all intermediate approximations. So we ask
whether the covariance Dλ is reflection positive for 0 < λ < ∞. In order
to establish a counterexample to RP for the Gaussian measure, it is only
necessary to find one function f , supported at positive time, for which

(3.3) 〈f, ϑDλ f〉L2 < 0 .

We now give such a counterexample to RP for dµλ.

3.2. RP Fails if d = 1 and 1
2
< λm2 < ∞. To make things as simple

as possible, we first inspect the case d = 1. Since

(3.4) ‖f‖2H = 〈f, ϑDλf〉L2 6 〈f,Dλf〉L2 6 〈f, Cf〉L2 = 〈f, f〉H−1
,

the inner product (3.2) extends by continuity from L2 to the Sobolev space
f ∈ H−1(Rd+). For d = 1 the Sobolev space contains the Dirac measure δt
localized at 0 6 t, so in our example we choose f to be a linear combination
of two Dirac delta functions localized at two distinct non-negative times
0 6 s < t.
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Define

(3.5) f(u) = ems δs(u)− emt δt(u) ,

so

(3.6) (ϑf)(u) = ems δs(−u)− emt δt(−u) = ems δ−s(u)− emt δ−t(u) .

We choose f of this form, as it is in the null space of the RP inner product
for the covariance C. In fact

〈f, ϑCf〉L2 = 〈ϑf,Cf〉L2 =
〈
(emsδ−s − emtδ−t), C(emsδs − emtδt)

〉
L2

= e2ms 〈δ−s, Cδs〉+ e2mt 〈δ−t, Cδt〉
−em(t+s) 〈δ−s, Cδt〉 − em(t+s) 〈δ−t, Cδs〉

=
1

2m
(1 + 1− 1− 1) = 0 .(3.7)

Hence

(3.8) 〈f, ϑDλf〉L2 = −e−λm2
〈
f, ϑeλ∆Cf

〉
L2

.

We infer that f gives a counterexample to RP for λm2 <∞ in case for some
s, t,

(3.9) 0 <
〈
ϑf, eλ∆Cf

〉
L2

.

Define

(3.10) Wλ,m = (4πλ)1/2 2meλ∆C .

Recall that the operator 2mC has integral kernel

(3.11) 2mC(u, s) = e−m|u−s| .

Furthermore the operator (4πλ)1/2 eλ∆ has the integral kernel

(3.12)
(

(4πλ)1/2 eλ∆
)

(t, u) = e−
(t−u)2

4λ .

Thus the integral kernel Wλ,m(t, s) = Wλ,m(t− s) of Wλ,m equals

(3.13) Wλ,m(t− s) =

∫ ∞
−∞

du e−
(t−s−u)2

4λ
−m|u| = Wλ,m(s− t) .

The second equality in (3.13) shows that Wλ,m, which is real, is also hermi-
tian. Remark that

(3.14) Wλ,m(t) = m−1Wλm2,1(mt) .

Thus without loss of generality we may study W (t) = Wλ,1(t).
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3.2.1. An Indicative Bound. One can rewrite the condition for violation
of RP in (3.9) in terms of W . If for some 0 6 s < t,

(3.15) es+tW (s+ t) <
1

2

(
e2sW (2s) + e2tW (2t)

)
,

then RP would fail. With the Schwarz inequality, and the comparison of
geometric and arithmetic means one has the following bound: while close,
as one can take exp

(
(t− s)2/4λ

)
≈ 1, we need more.

et+sW (s+ t)

= et+s
∫ ∞
−∞

du e−
(s+t−u)2

4λ e−|u|

= et+s e−
(s+t)2

4λ

∫ ∞
−∞

du e−
u2

4λ
−|u| e

su+tu
2λ

6 et+s e−
(s+t)2

4λ

(∫ ∞
−∞

du e−
u2

4λ
−|u|e

su
λ

)1/2(∫ ∞
−∞

du e−
u2

4λ
−|u|e

tu
λ

)1/2

= et+s e
(s−t)2

4λ

(∫ ∞
−∞

du e−
(u−2s)2

4λ
−|u|
)1/2(∫ ∞

−∞
du e−

(u−2t)2

4λ
−|u|
)1/2

= et+s e
(s−t)2

4λ W (2s)1/2W (2t)1/2

6
1

2
e

(s−t)2
4λ

(
e2sW (2s) + e2tW (2t)

)
.

3.2.2. A Numerical Check. We have used Mathematica to make a nu-
merical check of whether f violates RP in case s = 0 and λ = 1. We have
plotted the function
(3.16)

F (t) =
1

2

(
W (0) + e2tW (2t)

)
−etW (t) , with W (t) =

∫ ∞
−∞

du e−
(t−u)2

4
−|u| .

If F (t) > 0 for any positive t, then RP fails to hold.
The Mathematica plot of F (t) appears in Figure 2. Clearly there are

values of t ∈ (0, 1.5) for which F (t) is positive.1 So this indicates for the
value of λ = m = 1 that we tested, RP does not hold for Φλ(t) in the
measure dµ(Φλ).

1I am grateful to Alex Wozniakowski for assisting me to use Mathematica to test
whether F (t) changes sign.
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Fig 2. RP of Dλ requires F (t) = 1
2
W (0) + 1

2
e2tW (2t)− etW (t) 6 0 for all 0 6 t.

3.2.3. The Proof. Since the RP violation occurs for small t, we can give
a proof of the existence of the counterexample expanding F (t) as a power
series in t. First we use the form (3.13) to extend W (t) (defined here for
positive t as an even function to negative t.) Then it is clear from the form
of F (t), that F (t) is an analytic function at t = 0. Therefore the sign of F (t)
for small 0 < t is determined by the first non-zero term in the power series
at t = 0, and this will be the term of second order. For this calculation we
introduce the parameter λ. We show that RP is violated for 1

2 6 λm2.
From (3.13) one has

(3.17) Wλ(t) = Wλ(0) +
t2

2
W ′′λ (0) +O(t4) ,

and both 0 < Wλ(0), as well as

(3.18) W ′′λ (0) = cλ −
1

2λ
Wλ(0) , with 0 < cλ =

1

4λ2

∫ ∞
−∞

duu2e−
u2

4λ
−|u| .
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The corresponding expansion for F (t) is

F (t) =
1

2
Wλ(0) +

1

2

(
1 + 2t+ 2t2

) (
Wλ(0) + 2t2W ′′λ (0)

)
−
(

1 + t+
t2

2

)(
Wλ(0) +

t2

2
W ′′λ (0)

)
+O(t3)

=
t2

2

(
Wλ(0) +W ′′λ (0)

)
+O(t3)

=
t2

2

(
cλ +

(
1− 1

2λ

)
Wλ(0)

)
+O(t3) .(3.19)

As 0 < cλ,Wλ(0), the leading non-zero coefficient in F (t) is strictly positive
for 1

2 6 λ. (It is also valid for some λm2 < 1
2 .) Therefore there is an ε > 0

such that for t ∈ (0, ε),

(3.20) 0 < F (t) , for t ∈ (0, ε) .

Hence RP does not hold for 1
2 6 λ < ∞. Reinterpreting this with respect

to the scaled function Wλ,m(t) according to (3.14), we infer: RP fails for
1
2 6 λm2 <∞.

3.3. RP Fails if 1 < d and λ,m2 < ∞. For 1 < d we show that RP for
dµλ(Φλ) fails for all λm2 ∈ (0,∞). Denote the Sobolev-space inner products
on Rd and Rd−1 respectively as
(3.21)

〈f1, f2〉−1 = 〈f1, C f2〉L2(Rd) , and 〈h1, h2〉− 1
2

=

〈
h1,

1

2µ
h2

〉
L2(Rd−1)

.

In this case µ =
√
−~∇2 +m2. We also denote µ(~p) =

√
~p 2 +m2 as the

multiplication operator in Fourier space given by µ.
Start by choosing a real, spatial test function h(~x) ∈ S(Rd−1), whose

Fourier transform h̃(~p) has compact support. (Reality only requires h̃(~p) =

h̃(−~p).) Define the family of functions

(3.22) hT (~x) =
1

(2π)(d−1)/2

∫
Rd−1

eTµ(~p) h(~p) ei~p·~x d~p ∈ S(Rd−1) ,

with h0 = h, and 0 6 T . Let δS denote the one-dimensional Dirac measure
with density δS(t) = δ(t−S). For 0 6 S < T define a space-time one-particle
function f(x) = fS,T (x) by

(3.23) f = hS ⊗ δS − hT ⊗ δT .
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Note that f is in the null space of the RP form defined by C, relative to
the time-reflection ϑ. In fact

〈f, ϑf〉−1 = 〈f, ϑCf〉L2

=
〈
hS , e

−2Sµ hS
〉
− 1

2
+
〈
hT , e

−2Tµ hT
〉
− 1

2

−
〈
hS , e

−(S+T )µ hT

〉
− 1

2

−
〈
hT , e

−(S+T )µ hS

〉
− 1

2

= 〈h, h〉− 1
2

+ 〈h, h〉− 1
2
− 〈h, h〉− 1

2
− 〈h, h〉− 1

2
= 0 .(3.24)

Hence our test of RP relies whether 〈f, f〉H is non-negative, where

(3.25) 〈f, f〉H = 〈f, ϑDλf〉L2 = −
〈
ϑf, e−λ(−∆+m2)Cf

〉
L2

.

Expanding f according to (3.23) yields four terms, each proportional to

F (t1, t2) =
〈

(ht1 ⊗ δ−t1) , e−λ(−∆+m2)C (ht2 ⊗ δt2)
〉
L2

= 〈(gt1 ⊗ δ−t1) , X (gt2 ⊗ δt2)〉L2 .(3.26)

Here gt = e
1
2
λ~∇2

ht ∈ S(Rd−1), and X =

(
e−λ(− ∂2

∂t2
+m2)C

)
. Note that

ϑδt1 = δ−t1 , as (ϑδt1)(u) = (ϑδ)(u− t1) = δ(−u− t1) = δ(u+ t1) = δ−t1(u).
However ϑ does not affect the time in ht1 .

The integral kernel for X is real and has the form

(3.27) X(x, x′) = (4πλ)−1/2e−λm
2

∫
R
du

(
1

2µ
e−

(t−t′−u)2
4λ

−|u|µ
)

(~x− ~x′) .

Thus
(3.28)

F (t1, t2) = (4πλ)−1/2e−λm
2

∫ ∞
−∞

du e−
(t1+t2−u)

2

4λ

〈
e−|u|µgt1 , e

−|u|µgt2

〉
− 1

2

.

Since f is real and the kernels are real, F (t1, t2) = F (t2, t1) is real. Also it is
clear from inspection that the compact support of h̃ ensures that F (t1, t2)
extends in a neighborhood of (t1, t2) = (0, 0) to a complex analytic function
of (t1, t2) with a convergent power series at the origin.

Combining these remarks,

(3.29) 〈f, f〉H = − (F (S, S) + F (T, T )− F (S, T )− F (T, S)) .

As in §3.2.3, we take S = 0 and 0 < T . Define F (T ) by

(3.30) 〈f, f〉H = −(4πλ)−1/2e−λm
2
F (T ) .
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Then

(3.31) F (T ) = (4πλ)1/2eλm
2

(F (0, 0) + F (T, T )− 2F (0, T )) .

The function f provides a counterexample to RP if for any T one has
both 0 < F (T ) and λ,m2 < ∞. Expand F (T ) as a power series at T = 0.
We claim that F (0) = F ′(0) = 0, so

(3.32) F (T ) =
T 2

2
F ′′(0) +O(T 3) .

Clearly F (0) = 0. Also

F ′(T ) = − 1

λ

∫ ∞
−∞

du (2T − u)e−
(2T−u)2

4λ

〈
e−|u|µgT , e

−|u|µgT

〉
− 1

2

+2

∫ ∞
−∞

du e−
(2T−u)2

4λ

〈
e−|u|µgT , µ e

−|u|µgT

〉
− 1

2

+2
1

2λ

∫ ∞
−∞

du (T − u)e−
(T−u)2

4λ

〈
e−|u|µg0, e

−|u|µgT

〉
− 1

2

−2

∫ ∞
−∞

du e−
(T−u)2

4λ

〈
e−|u|µg0, µ e

−|u|µgT

〉
− 1

2

.(3.33)

Taking T = 0, the second and last terms cancel, leaving an integrand that
is an odd function of u. Therefore F ′(0) = 0. Likewise the second derivative
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equals

F ′′(T ) = − 2

λ

∫ ∞
−∞

du e−
(2T−u)2

4λ

〈
e−|u|µgT , e

−|u|µgT

〉
− 1

2

+
1

λ2

∫ ∞
−∞

du (2T − u)2e−
(2T−u)2

4λ

〈
e−|u|µgT , e

−|u|µgT

〉
− 1

2

− 2

λ

∫ ∞
−∞

du (2T − u)e−
(2T−u)2

4λ

〈
e−|u|µgT , µ e

−|u|µgT

〉
− 1

2

− 2

λ

∫ ∞
−∞

du (2T − u)e−
(2T−u)2

4λ

〈
e−|u|µgT , µ e

−|u|µgT

〉
− 1

2

+4

∫ ∞
−∞

du e−
(2T−u)2

4λ

〈
e−|u|µgT , µ

2 e−|u|µgT

〉
− 1

2

+
1

λ

∫ ∞
−∞

du e−
(T−u)2

4λ

〈
e−|u|µg0, e

−|u|µgT

〉
− 1

2

− 1

2λ2

∫ ∞
−∞

du (T − u)2e−
(T−u)2

4λ

〈
e−|u|µg0, e

−|u|µgT

〉
− 1

2

+
1

λ

∫ ∞
−∞

du (T − u)e−
(T−u)2

4λ

〈
e−|u|µg0, µ e

−|u|µgT

〉
− 1

2

+
4

λ

∫ ∞
−∞

du (T − u)e−
(T−u)2

4λ

〈
e−|u|µg0, µ e

−|u|µgT

〉
− 1

2

−2

∫ ∞
−∞

du e−
(T−u)2

4λ

〈
e−|u|µg0, µ

2 e−|u|µgT

〉
− 1

2

.(3.34)

Thus for T = 0,

(3.35) F ′′(0) =

∫ ∞
−∞

du e−
u2

4λ

〈
e−|u|µg0,

(
2µ2 − 1

λ
+

u2

2λ2

)
e−|u|µg0

〉
− 1

2

.

The positivity of F ′′(0) would be a consequence of the expectation of the

operator 2µ2 − 1
λ + u2

2λ2
being positive in the vectors e−|u|µ g0 under consid-

eration.
The integral of the third term, u2/2λ2, is strictly positive for all λ <∞.

Furthermore µ acts in Fourier space as multiplication by µ(~p), so m 6 µ,
and 0 6 2µ2−λ−1 if 1

2 6 λm2. This agrees with the conclusion of §3.2.3. But

as 1 < d, we can assume that the support of h̃ (which is also the support of

e−|u|µ(~p)g̃0) lies outside the ball of radius (2λ)−1/2. This entails λ−1 6 2µ(~p)2

on the support of h̃, and 0 6 2µ2 − λ−1 on the domain of functions h we
consider.

Therefore we infer for such h that 0 < F ′′(0). Consequently for small,
strictly positive T , one has 0 < F (T ). Assuming λ,m2 < ∞, the relation



16 ARTHUR JAFFE

(3.30) shows that 〈f, f〉H < 0. Hence we conclude that RP fails in 1 < d for
all 0 < λ,m2 <∞.

4. An Interesting Fundamental Question. When constructing
a non-Gaussian dµ(Φ) from a SPDE, how might one establish RP?
The answer to this question is essential, for only with RP can one make
the connection between probability theory and relativistic quantum field
theory. And it is difficult to imagine in a situation where one does not have
an explicit form for the answer (as in the Gaussian case of the free field), that
one can establish a positivity condition unless it holds in each approximation.
The result presented here clearly generalize to non-Gaussian measures whose
moments depend continuously on the non-linearity. So can one modify the
SPDE procedure in order to preserve RP for every intermediate λ?
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