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We explore a general diagrammatic framework to understand qudits and their braiding, especially
in its relation to entanglement. This involves understanding the role of isotopy in interpreting
diagrams that implement entangling gates as well as some standard quantum information protocols.
We give qudit Pauli operators X,Y, Z and comment on their structure, both from an algebraic and
from a diagrammatic point of view. We explain alternative models for diagrammatic interpretations
of qudits and their transformations. We use our diagrammatic approach to define an entanglement-
relay protocol for long-distance entanglement. Our approach rests on algebraic and topological
relations discovered in the study of planar para algebras. In summary, this work provides bridges
between the new theory of planar para algebras and quantum information, especially in questions
involving entanglement.

I. INTRODUCTION

In this paper we give various diagrammatic models of
qudits. In our first model, we represent one qudit as
a string; in the second (two-string) model it becomes a
cap; in a third (four-string) model it is represented by a
pair of caps. The particles in each of these models may
be parafermions, or bosons that arise as parafermionic
particle-anti-particle pairs.

It is the robust nature of these diagrams, which illus-
trate properties of states and of operators, that fascinates
us. Our general approach is an application of the mathe-
matical framework of planar para algebras, that we intro-
duced in [1]. In that paper we elaborate on the general
topological properties of the models that we only sketch
here.

The main goal of our present work is to provide a
link between the new theory of planar para algebras and
quantum information. We give a solution to the Yang-
Baxter equation that represents a braid. In the first
two models, the braiding of qudits describes qudit entan-
glement. We also use braiding of qudits to obtain the
entanglement distribution protocol, the entanglement-
swapping protocol and the entanglement-relay protocol.

We illustrate in Figure 1 the use of a braid to sim-
ulate the entanglement provided by the conjunction of
a Hadamard and CNOT gate. We construct a similar
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FIG. 1. Entangling, unitary solution of the Yang-Baxter
equation on the left, and entangling quantum circuit on the
right.

maximally entangling qudit-braid.
We use braids such as in Figure 1, but generalized to

include particle excitations illustrated in Figure 2. Here
the particle with charge k is represented by the label k.
As a consequence of the Brylinskis’ remarkable criterion,
one can employ this braid to obtain a partial topological
quantum computer for parafermions.1

k
=

k

FIG. 2. Qudit-braid relation.

The qudit-braid relation illustrated in Figure 2 shows
how a particle moves under the braid crossing. This
identity allows us to use topological isotopy in three-
dimensional space. This technique was used before in
planar algebras, but it is new in the context of braids
with particle excitations.

We explain our notation in §II, including the interpre-
tation of the structure of states in terms of diagrams, as
well as the interpretation of the trace and partial trace–

1 This criterion is Theorem 4.1 of [2]. The preprint and published
versions have different organization, and we refer to the number-
ing in the latter. See also [3].
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which enter the process of measurement. In §III we in-
troduce braids that involves particle excitations. There
we explain the qudit-braid relation.

In §IV we focus on two different versions of qudit Pauli
X,Y, Z matrices, which are useful for interpreting proto-
cols. The diagrammatic presentation of these matrices
makes clear the way X,Y, Z are built from qudits, and
how one can translate the qudit representation into for-
mulas. In particular, in our four-string model one sees
from the diagrams how and why the matrices X,Y, Z act
on the charge-zero (gauge-invariant) subspace of a space
of qudits.

In §V we give some applications of the diagrammatic
method to understanding entanglement protocols. We
address the entanglement-distribution protocol and the
entanglement-swapping protocol. We go into one appli-
cation in detail, in which we realize a quantum circuit
using the one-string model (that we employ throughout
the bulk of the paper). This model illustrates how we
take advantage of topological isotopy—a property central
to the structure of planar para algebras.

In §VI A–§VI D we contrast our one-string, two-string,
and four-string models. (The four-string model is es-
pecially adaptable to certain situations with redundant
degrees of freedom, including models for X,Y, Z. Here
charge neutrality of qudits as particle-anti-particle pairs
plays a natural role.)

In §VI E we discuss some further applications. In par-
ticular we show how our four-string model easily de-
scribes controlled gates, that have been studied alge-
braically in a recent paper of Hutter and Loss [4].

In §VII we define an entanglement-relay protocol to
implement long-distance entanglement. This protocol al-
lows one to transfer entanglement in a non-local fashion
to distant objects.

II. NOTATION

A. The Parafermion Algebra

The parafermion algebra is a ∗-algebra with unitary
generators cj , which satisfy

cdj = 1 and cjck = q ckcj for 1 6 j < k 6 m. (1)

Here q ≡ e
2πi
d , i ≡

√
−1, and d is the order of the

parafermion. Consequently c∗j = c−1j = cd−1j where *
denotes the adjoint. Majorana fermions arise for d = 2.
This is an example of a planar para algebra, for which the
general theory provides diagrammatic representations:
for elements of this algebra, and for the representation
of its action on Hilbert space.

B. Diagrammatic Representation

We introduce diagrams to represent elements of our
algebra or qudits. The diagrams multiply from bottom

to top2. Also, tensor products multiply from left to right.
We represent the horizontal multiplication AB and the
tensor product A⊗B by

A

B

and

A

B

.

We represent a generator cj in the jth tensor factor as

cj replaced by 1

j

.

The power cαj of cj arises from replacing the label “1” by
the label “α.” Additionally,

β

α
= α+ β , and d = .

The parafermion relation (1) becomes

j

α

k

β
= qαβ

j

α

k

β for j < k ,

(2)

where the strings between j and k contain no excitations.
We call qαβ the twisting scalar.

Let ζ be a square root of q, with the property ζd
2

= 1.
We remark that the diagrammatic interpretation given
in [1] of the twisted tensor product X ◦ Y = ζ |X||Y |XY
introduced in [5, 6], interpolates between the left and
right side of the parafermion relation (2). We write the
labels on the same vertical height. Then

j

α

k

β
= ζαβ

j

α

k

β
for j < k .

(3)

The diagram called a cap is not an element of the
parafermion algebra. Rather it is a vector that provides
one qudit. We transport the qudit label from left to right
on the cap, producing a phase ζ, which can be interpreted
as a Fourier transform relation, see [1]. The cap has the
form

α = ζα
2

α .

2 This follows standard conventions for braids, while the standard
convention for circuits is multiplication from left to right.
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We represent the adjoint * diagrammatically as

∗ : 1 d−1 .
(4)

More generally, the adjoint * of a product comes from its
vertical reflection,

∗

A

B

=

A∗

B∗ .

The cup diagram is related to the cap above, and it
also satisfies a parafermion relation. We obtain the cup
from the cap by the adjoint, followed by the substitution
α→ −α. Thus

α = ζ−α
2 α .

Taken together, the cap and cup correspond to the Dirac
bra-ket. This representation will be used in our two-
string and four-string models of §VI.

C. Trace

The normalized trace tr(·) is represented diagrammat-
ically as

tr

( )
= 1

δ
= 1 ,

tr

(
k

)
= 1

δ k = 0 for 1 ≤ k ≤ d− 1 .

Here δ =
√
d represents the circle diagram constant,

δ = .

D. Inner Product

The standard, or computational, basis of the Zd graded
Hilbert space Hd(m) is |i1i2 · · · im〉 ≡ |i1〉 ⊗ |i2〉 ⊗ · · · ⊗
|im〉, for 0 6 i1, i2, . . . , im 6 d− 1. This vector is graded
by
∑m
k=1 ik mod d. In our one-string model in §VI, we

represent the vector |i1i2 · · · im〉 by

i1
i2
· · ·

im

.

For a, b ∈ Hd(m), we represent the inner product 〈a|b〉
by

δ−m

· · ·
a∗
· · ·
b

· · ·

· · ·
.

E. Partial Trace

Planar parafermion algebras are half-braided, allow-
ing a partial trace to be defined. The partial trace
trj1,j2,··· ,jk(·) for 1 ≤ j1, j2, · · · , jk ≤ m is represented
diagrammatically as

trj1,j2,··· ,jk

( · · ·

· · ·
A

)
= 1

δk A
j1 j2 ··· jk

.

On the right hand side the j1, j2, · · · , jk strings are closed
to form caps. The nonclosed strings always move under
the caps. Moreover, the strings are closed clockwise from
top to bottom. The spherical condition allows strings
to be closed counterclockwise from top to bottom. See
§2.2 of [1] for details and the definition of the spherical
condition.

F. Measurement

We use the meter in Figure 3 to perform a measure-
ment of the strings j1, j2, · · · , jk, represented diagram-
matically in Figure 4. The result of the measurement is
represented in Figure 5.

FIG. 3. Meter.

The meter designates that the j1, j2, · · · , jk strings are to
be closed from top to bottom to form caps. We proceed
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j1 j2 · · · jk

FIG. 4. Strings to be measured, j1, j2, · · · , jk .

j1 j2 ··· jk

FIG. 5. Measurement: unmeasured strings pass underneath
the meter.

by removing the meter from the diagram and closing the
j1, j2, · · · , jk strings, as discussed above for the partial
trace.

Let us illustrate a measurement for parafermions of or-
der d. Consider three parafermions in the computational
basis

i1

i2

i3

.

Suppose we want to measure the first two tensor factors.
We place the meter under the first two strings as illus-
trated below,

i1

i2

i3

.

The meter under the first two strings designates that
those strings are closed to form caps. We obtain

1
δ2

i1
i2

i3

.

As the circle diagram has value δ, the measurement of
an unconnected string with no excitation is normalized
to give the value 1.

III. BRAIDS AND ENTANGLEMENT

A. Background

The topological approach to quantum computation
became important with Kitaev’s 1997 paper proposing

an anyon computer—work that only appeared some five
years later in print [7]. In §6 on the arXiv, he described
the braiding and fusing of anyonic excitations in a fault-
tolerant way. Freedman, Kitaev, Larsen, and Wang ex-
plored braiding further [8], motivated by the pioneering
work of Jones, Atiyah, and Witten on knots and topo-
logical field theory [9–11].3 Kauffman and Lomonaco re-
marked that the braid diagram describes maximal entan-
glement [13].

B. The Braid

For fermions and parafermions the parafermionic Fock
space Hd(m) is isomorphic to the m-qudit space Cdm ,
where d denotes the parafermion order and m is the num-
ber of modes. The choice of d = 2 is the standard Fock
space for m fermionic modes, which is isomorphic to the
m-qubit space [14].

The notion of fermionic entanglement for pure states
was analyzed in [15–17], whereby product states are those
that one can write as a tensor product in the Fock repre-
sentation. This definition of entanglement naturally gen-
eralizes to the case of parafermionic pure states. We refer
to this generalization as parafermionic entanglement.

The unitary braid operator4 in Figure 6 canonically
generates maximal fermionic and parafermionic entan-
glement for arbitrary finite dimensions. See §8 of [1] for
details and the definition of the braid

≡ ω
− 1

2√
d

∑d−1
k=0

k

−k

FIG. 6. Braid diagram for entanglement.

where ω = 1√
d

∑d−1
j=0 ζ

j2 is a phase. (Recall ζ2 = q, and

qd = ζd
2

= 1.) The braid has the special property that
qudit excitations can move under the braid crossing as
illustrated in Figure 2.

Since the braid is unitary, its adjoint equals the inverse
braid

≡ ω
1
2√
d

∑d−1
k=0 k

−k
.

(5)

3 Diagrammatic notation in quantum information theory origi-
nated in the quantum circuit model of Deutsch [12], although
without the consideration of topology.

4 These braids can be “Baxterized” in the sense of Jones [18].
They are the limits of solutions to the Yang-Baxter equation in
statistical physics [19, 20], and have actually been introduced
earlier in [21]. Such kinds of braid statistics in field theory and
quantum Hall systems were considered extensively by Fröhlich,
see [22, 23].
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This inverse disentangles fermionic and parafermionic
states of arbitrary finite dimension in a canonical way.

In the following example we illustrate maximal entan-
glement for the fermionic case d = 2. Consider the 2-
qubit space

C4 = SpanC

{
,

1
,

1
, 1
−1

}
,

in which the braid acts on the basis by

= ω− 1
2√
2

(
− 1

−1
)

,
(6)

1

= ω− 1
2√
2

(
1 − 1

)
,

(7)

1

= ω− 1
2√
2

(
1+1

)
,

(8)

1
−1

= ω− 1
2√
2

(
1
−1+

)
.

(9)

In quantum computation the braid is “imprimitive” in
the sense of the Brylinskis, since it is entangling. This
result yields a partial topological quantum computer for
fermions and parafermions. Additionally, the braid may
be applied to construct several quantum information pro-
tocols diagrammatically, which consume entanglement as
a resource.

In Figure 7 we illustrate the braid bi on the ith and
i+ 1th strings.

bi =

i i + 1

FIG. 7. Braid between Adjacent Strings.

IV. QUDIT PAULI X,Y, Z MATRICES

One can find qudit, Pauli X,Y, Z matrices that satisfy
the relations

Xd = Y d = Zd = 1 , (10)

Y X = q XY , ZY = q Y Z , and XZ = q ZX .
(11)

Here q = e
2πi
d . These matrices must also satisfy a second

set of relations defined in terms of a square root ζ = q
1
2

for which ζd
2

= 1, namely

XY Z = Y ZX = ZXY = ζ−1 . (12)

In §4 of [1] we give two different solutions X̂, Ŷ , Ẑ for
X,Y, Z. Each solution is a quadratic function of four
qudit generators c1, c2, c3, c4 of the parafermion algebra.

A. Solution I

In §5 of [1] we give a diagrammatic interpretation for
these operators. Our first solution has the form

X̂ = ζ c−11 c4 , Ŷ = ζ c2c
−1
4 , Ẑ = ζ c−13 c4 . (13)

These matrices satisfy relations (10)–(11), but they do
not identically satisfy (12) on the entire Hilbert space.

As explained in [1], the product X̂Ŷ Ẑ has the form

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = ζ−1γ , (14)

where

γ = qc−11 c2c
−1
3 c4 = eiQ . (15)

This defines the self-adjoint charge operator Q mod Zd.
Since X̂, Ŷ , Ẑ are zero-graded, each operator acts on
the eigenspaces of γ. One achieves the missing relations
(12) by restricting to the charge-zero subspace for which
γ = +1.

B. Solution II

Our second solution is

X̂ = ζ c−11 c2 , Ŷ = ζ c1c
−1
3 , Ẑ = ζ c−11 c4 . (16)

These matrices X̂, Ŷ , Ẑ also satisfy the relations (10)–
(11) and (14). So they satisfy (12) on the same eigenspace
γ = +1. One can perform this construction at each one
of various sites labelled by a subscript j, giving rise to

a representation of operators X̂j , Ŷj , Ẑj at each site, and
that mutually commute at different sites.

Diagrammatically our two solutions (13) and (16) lead
to very different looking models, which in §VI we call
four-string models (each string representing a qudit) of
type I and type II. In the related paper [1], we give details
and develop these results in a more general context.
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C. Comparison with Kitaev’s d = 2 construction

Solution I, given in §IV A, is related to the construction
of Kitaev for d = 2. Equation (11) of [24] gives the d =
2 representation that one commonly uses in condensed-
matter physics, in which

X̂ = i c1c4 , Ŷ = i c2c4 , Ẑ = i c3c4 ,

and one has

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = ic1c2c3c4 .

One takes

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = i ,

on the subspace for which c1c2c3c4 = 1.
We can recover this solution of Kitaev from our for-

mulas, by taking d = 2, ζ = i, and γ = −1 (rather than
γ = +1 as we require). Likewise one can generalize this
construction for arbitrary d, by taking

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = ζ−1qk ,

on the subspace graded by k mod d, where γ = qk.
However our Solution I is different in a subtle way from

Kitaev’s construction. In our four-string model described
in §VI D, we represent a qudit by a charge-zero, particle-
anti-particle pair. The neutral total charge means that
γ = +1.

For this reason we find our choice natural. With our
basis, the qudit Pauli X,Y, Z are neutral and act as d×d
matrices in a natural way, preserving charge neutrality.
But in Kitaev’s model γ = −1, so qudits are not neutral.
Then one loses the particle-anti-particle interpretation of
qudits, that we exploit in our diagrams.

V. PROTOCOLS

A. Entanglement Distribution Protocol

We apply the braid to construct the entanglement dis-
tribution protocol. Consider the computational basis for
two parafermions of order d,

i1

i2 for 0 ≤ i1, i2 ≤ d− 1 .

We act with the braid of Figure 6 to generate maximal
entanglement, namely

i1
i2

=
ω− 1

2√
d

d−1∑
k=0

q(k+i1)k

k + i1

−k + i2

.

(17)

The special case of fermions was shown in (6)–(9). The
remaining step of the protocol involves distribution of
the entanglement through a noiseless quantum channel
[25]. Such a channel leaves (17) invariant. Physically the
distribution is performed by a variety of methods [26, 27].

B. Entanglement-Swapping Protocol

We can also apply the braid to construct the
entanglement-swapping protocol. This protocol inputs
four disentangled fermionic or parafermionic states, and
maximally entangles two of the states without trivially
braiding them. Physically these entangled states do not
need to share any common past [28, 29].

Consider the diagram below, which entangles the first
and second strings, and it entangles the third and fourth
strings. Then, it disentangles the second and third
strings with the inverse braid:

.
(18)

We proceed by placing the meter, introduced in §II F,
under the second and third strings of (18), as illustrated
below

.

(19)

We claim that (19) acts by maximally entangling the left-
most and rightmost input states as desired. Here we use
the relations in §8 of [1].

We remove the meter in (19), closing the second and
third strings to form caps as illustrated below

1
δ2 .

(20)

Isotopy is a property of parafermion planar algebra. This
topological notion simplifies the computation of (20) and
reduces it to a scalar multiple of the braid. It permits
us to move the strings in three-dimensional space. We
note that the red string under the Reidemeister moves
becomes the braid’s over crossing. We use the second
Reidemeister move on (20) to obtain
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1
δ2 .

Application of the second and third Reidemeister moves
simplifies the diagram above to

1
δ2 .

The braid and its inverse in the last diagram above have
opposite coefficients by the first Reidemeister move, re-
ducing the diagram to

1
δ2 .

Therefore, the entanglement-swapping diagram in (19)
maximally entangles the leftmost and rightmost input
states without trivially braiding them. The end result
is shown in Figure 8, where we suppress the factor δ−2.
Note that in contrast to the topological moves that we
have used, an algebraic approach based on expanding
the braid into a sum of the basis elements leads to a
complicated computation for Figure 8.

FIG. 8. Entanglement-swapping diagram.

The entanglement-swapping protocol with braids holds
for arbitrary d. In Figure 9 we illustrate the fermionic
case d = 2.

in place of

H •

• H

H •

FIG. 9. Entanglement-swapping with braids on the left, and
a quantum circuit on the right.

Remark V.1 Pictorial representation of other proto-
cols, such as teleportation, superdense coding, and the
EPR protocol for quantum key distribution, could be stud-
ied by these methods.

VI. DIFFERENT MODELS FOR QUANTUM
INFORMATION

In this section we introduce and contrast one-string,
two-string, and four-string models, in order to represent
quantum information in terms of diagrams. Each of these
different models has its own advantages in describing dif-
ferent applications. For example, see §V for our use of the
one-string model. This model can also be imbedded into
the two-string model. In §VI E we give an application of
the four-string model.

The qudits are given by parafermions in the one-string
or two-string models. In the four-string model a single
qudit is a particle-antiparticle pair, so it always has total
charge zero. In both the two-string model and in the four-
string model, the qudit Pauli X,Y, Z matrices acting on
1-qudits can be represented by diagrams, see [1]. Here we
give the algebraic form of the four-string representation
in detail in §IV.

A. The One-String Model

In §II we realized a qudit by a single labeled
string. We replace m-qudits, represented algebraically
as |k1k2 · · · km〉, by the diagram

k1
k2
· · ·

km

.

Transformations Tm on m-qudits were realized by dia-
grams with m input strings and m output strings. We
represent them as a box with the m input strings (on the
top) and the m output strings (on the bottom),

· · ·

· · ·
Tm .

The measurement on the space of m-qudits is represented
by the trace,

1

δm

· · ·

· · ·
.

We call this representation of quantum information the
one-string model. In this model the Hilbert space is Zd
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graded. So, the transformations act on different com-
ponents as the graded tensor product. We note that the
diagrams used in the previous sections, such as the braid,
are zero graded, or globally gauge invariant. Thus, the
twisting scalar qαβ = 1, which reduces the graded tensor
product to the usual tensor product.

B. The Type I, Two-String Model

In the type I, two-string model, we realize a qudit by
one labeled cap

k .

Here 0 ≤ k ≤ d− 1. We represent m-qudits by

k1
k2 · · · km

.

We represent a transformation T2m on m-qudits by a
box with 2m input strings on top and 2m output strings
on the bottom,

· · ·

· · ·
T2m .

The one-string model can be embedded into the type I
two-string model by making the following replacements:

Qudit : k →
k ,

m Qudits :
k1

· · ·
km

→
k1

· · · km ,

Transformation :

· · ·

· · ·
Tm →

· · ·

· · ·
Tm ,

Measurement :
· · ·

· · ·
→ · · · .

C. The Type II, Two-String Model

In the type II, two-string model, we represent m-qudits
by labeled caps

kmk2

···

k1

.

In this model we represent a transformation T2m on
m-qudits by a box with 2m input strings on top and 2m
output strings on the bottom (as in the type I model),
namely

· · ·

· · ·
T2m .

The one-string model can be embedded into the type
II two-string model by replacements of a transformation
similar to type I model. The image of the transformation
acting on m-qudits becomes

kmk2

···

k1

Tm
.

The measurement is represented by

··
·

.

(21)

D. The Four-String Model

For the type I four-string model, we realize a qudit by
two labeled caps. We represent m-qudits by the picture:

k1 −k1 k2 −k2 · · · km −km .

Here 0 ≤ ki ≤ d − 1. For the type II four-string model,
we represent m-qudits by the diagram:

−k1k1 −k2k2 · · · −kmkm .



9

Again 0 ≤ ki ≤ d− 1.
We represent a transformation T4m on m-qudits by a

box with 4m input strings on top and 4m output strings
on bottom,

· · ·

· · ·
T4m .

Note that the four-string model is different from the
one-string model and the two-string model, where all op-
erators in the parafermion algebra with the proper num-
ber of generators preserve the space of qudits, namely
diagrams given by caps. For instance, the following dia-
gram does not preserve the space of 2-qudits:

.

In the four-string model we are interested in diagrams
that do preserve the space spanned by qudits. An oper-
ator in the parafermion algebra with 4m generators pre-
serves the space of m-qudits if and only if it is of the
following form,

∑
i Ti1 Ti2 · · · Tim ,

where each Tij is zero graded. A diagrammatic example
is the double braid in Figure 10 in §VI E

E. Double Braids as Controlled Gates

Let us construct some controlled transformations for
the type I four-string model. For a transformation A
acting on a single qudit, define the controlled transfor-
mation CA on 2-qudit states |ij〉 = |i〉|j〉 as

CA|ij〉 = |i〉Ai|j〉 . (22)

We use the matrices X, Y , Z given in (13) for A, to
describe the action on a single qudit, giving CX , CY , CZ .

The double braid S is illustrated in Figure 10. It pre-
serves 2-qudits. Furthermore the double braid is the
square of the controlled Z, namely

S = C2
Z . (23)

The relation (23) has been shown to be true by using
algebraic identities [4]. Here we give an elementary proof
using diagrams. In fact the proof follows from the qudit-
braid relation given in Figure 2. We illustrate our proof
with the isotopy in Figure 11.

One can obtain qudit matrices X, Y from the matrix
Z by the conjugation of braids bi of the ith-string given
in Figure 7. As in §5.2.2 of [1], one has:

Y = b2Z
∗b∗2;

X = b1b2Zb
∗
2b
∗
1.

FIG. 10. The Double Braid.

−i
j

=

j −i

= qij
j

−i

= qij
−i

j

= q2ij −i

j

FIG. 11. Double Braid Relation.

Thus

C2
Y = b6S

∗b∗6;

C2
X = b5b6Sb

∗
6b
∗
5.

Correspondingly, both C2
Y and C2

X also preserve the sub-
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space spanned by qudits and both are represented by
braided diagrams.

VII. ENTANGLEMENT-RELAY PROTOCOL

One can extend our earlier discussion in §V B in order
to create an entanglement-relay network to produce and
share long-distance entanglement. We now show how to
enable entanglement that is non-local. Such entangle-
ment might be across a device, allowing for non-local
entangling gates, or it might involve a network of dis-
tributed devices.

Let us describe the situation in detail in the case that
Alice wants to entangle her qudit with the qudit of Bob,
utilizing the aid of three intermediate helpers, H1, H2,
and H3, who line up from left to right. The idea is
that each person uses a nearest-neighbor for entangle-
ment swapping. Each swap involves one measurement
station, which we might call M1, . . . , M4. We illustrate
this protocol in Figure 12.

Alice

Alice Bob

H1 H2 H3 Bob

M1 M2 M3 M4

FIG. 12. Entanglement-Relay with Three Helpers.

The resolution of the protocol implements topological iso-
topy. This produces an overall constant δ−8 which we can
ignore, as this factor does not affect the entanglement.

The end result is the maximal entanglement of Alice’s
qudit with the qudit of Bob. It is clear that this situation
generalizes for any number #H of helpers, in which case
the constant would be δ−2(#H+1).
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stein, and D. Loss, Quantum correlations in two-
fermion systems, Phys. Rev. A 64, (2001) 022303, doi:
10.1103/PhysRevA.64.022303.

[18] V. F. R. Jones, Baxterization, Inter. J. Mod-
ern Physics A 6 (1991), no. 12, 2035–2043, doi:
10.1142/S0217751X91001027.

http://arxiv.org/abs/1602.02662
http://arxiv.org/abs/1602.02662
http://arxiv.org/pdf/quant-ph/0108062v1.pdf
http://arxiv.org/pdf/quant-ph/0108062v1.pdf
http://dx.doi.org/10.1103/PhysRevLett.89.247902
http://arxiv.org/abs/1511.02704
http://arxiv.org/abs/1511.02704
http://arxiv.org/abs/1506.04197
http://dx.doi.org/10.1007/s00220-015-2340-x
arXiv:quant-ph/9707021
arXiv:quant-ph/9707021
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1007/BF02698547
http://dx.doi.org/10.2307/1971403
http://projecteuclid.org/download/pdf_1/euclid.cmp/1104161738
http://projecteuclid.org/download/pdf_1/euclid.cmp/1104161738
http://dx.doi.org/10.1098/rspa.1989.0099
http://dx.doi.org/10.1088/1367-2630/6/1/134
http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf
http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf
http://dx.doi.org/10.1103/PhysRevA.76.022311
http://dx.doi.org/10.1103/PhysRevB.63.085311
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1142/S0217751X91001027
http://dx.doi.org/10.1142/S0217751X91001027


11

[19] R. Baxter, Eight-vertex model in lattice statistics
and one-dimensional anisotropic Heisenberg chain I,
II, III, Ann. Phys. 76 (1973), 1–24, 25–47, 48–
71, doi:10.1016/0003-4916(73)90439-9, doi:10.1016/0003-
4916(73)90440-5, doi:10.1016/0003-4916(73)90441-7.

[20] C. N. Yang, Some exact results for the many-body prob-
lem in one dimension with repulsive delta-function in-
teraction, Phys. Rev. Lett., 19 (1967), 1312–1315, doi:
10.1103/PhysRevLett.19.1312.

[21] V. Fateev and A. B. Zamolodchikov, Self-dual so-
lutions of the star-triangle relations in ZN -models,
Physics Letters 92A (1982), 37–39, doi:10.1016/0375-
9601(82)90736-8.
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