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Abstract. We explore a general framework to understand iso-
topy in the braiding of qudits and its relation to entanglement.
This involves the use of diagrams to represent qudits and to imple-
ment some standard quantum information protocols. We introduce
qudit Pauli operators X,Y, Z algebraically and also diagrammati-
cally, and use them in our discussion. We explain some alternative
models for diagrammatic structures and briefly discuss relation-
ships between them. Our results rely on algebraic and topological
relations discovered in the study of planar para algebras. In sum-
mary, this work provides bridges between the new theory of planar
para algebras and quantum information, especially in questions
involving entanglement.
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1. Introduction

The topological approach to quantum computation became impor-
tant with Kitaev’s 1997 posting proposing an anyon computer—a paper
that only appeared some five years later in print [16]. In §6 of the arXiv
version, he described the braiding and fusing of anyonic excitations in
a fault-tolerant way. Freedman, Kitaev, Larsen, and Wang explored
braiding further [8], motivated by the pioneering work of Jones, Atiyah,
and Witten on knot invariants and topological field theory [14, 2, 19].
Kauffman and Lomonaco remarked that the braid diagram describes
maximal entanglement [15].
In this paper we give diagrammatic interpretations of qudits, using

the framework of planar para algebras introduced in [12]. This picture
is compatible with the description of qudit entanglement. We illustrate
in Figure 1 the use of a braid to represent the entanglement provided
by the conjunction of a Hadamard and CNOT gate. We construct

in place of
H •

in place of
• H

Figure 1. Entangling, unitary solution of the Yang-
Baxter equation on the left, and entangling quantum cir-
cuit on the right.

a similar maximally entangling qudit-braid. We use braids such as
in Figure 1, but generalized to include particle excitations illustrated
in Figure 2, with the notation explained in §2. We illustrate how to
obtain entanglement distribution and entanglement-swapping. One can
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employ this braid to obtain a partial topological quantum computer.
This is a consequence of the Brylinskis’ remarkable criterion.1

k =

k

Figure 2. Qudit-braid relation.

We show the qudit-braid relation in Figure 2, which illustrates how a
particle moves under the braid crossing. There are many different ways
to present transformations and qudits in quantum information theory.
We compare some of these methods, but in order not to distract from
our main discussion, we postpone this to §6. There we give different
concrete models to realize qudits and transformations.
In §5.2, we give one example in detail, in which we realize a quantum

circuit using the one-string model (that we employ throughout the bulk
of the paper). This model illustrates how we take advantage of using
topological isotopy—a property central to the structure of planar para
algebras. In §6.4 we apply our four-string model to construct controlled
gates, motivated by the recent paper of Hutter and Loss [10].

2. Notation

2.1. The Parafermion Algebra. The parafermion algebra is a ∗-
algebra with unitary generators cj , which satisfy

cdj = 1 and cjck = q ckcj for 1 6 j < k 6 m. (1)

Here q ≡ e
2πi

d , i ≡
√
−1, and d is the order of the parafermion. Con-

sequently c∗j = c−1

j = cd−1

j where * denotes the adjoint. Majorana
fermions arise for d = 2. This is an example of a planar para algebra,
for which the general theory provides diagrammatic representations:
for elements of this algebra, and for the representation of its action on
Hilbert space.

2.2. Diagrammatic Representation. We introduce diagrams to rep-
resent elements of our algebra or qudits. The diagrams multiply from
bottom to top2. Also, tensor products multiply from left to right.
We represent the horizontal multiplication XY and the tensor product
X ⊗ Y by

1They give this criterion in Theorem 4.1 of [4]. The preprint and published paper
are organized differently, and we refer to the numbering in the latter. See also [3].

2This follows standard conventions for braids, while the standard convention for
circuits is multiplication from left to right.
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X

Y

and

X

Y

.

We represent a generator cj in the jth tensor factor as

cj replaced by 1

j
.

The power cαj of cj arises from replacing the label “1” by the label “α.”
Additionally,

β

α
= α + β

,
and d =

.

The parafermion relation (1) becomes

j
α

k

β
= qαβ

j

α

k

β for j < k ,

(2)

where the strings between j and k contain no excitations. We call qαβ

the twisting scalar. We also remark that the diagrammatic interpre-
tation given in [12] of the twisted tensor product X ◦ Y = ζ |X||Y |XY

introduced in [13, 11], interpolates between the left and right side of
the parafermion relation (2). We write the labels on the same vertical

height. Here ζ is a square root of q, with the property ζd
2

= 1, so

j
α

k

β
= ζαβ

j

α

k

β for j < k .

(3)

The diagram called a cap is not an element of the parafermion alge-
bra. Rather it produces qudits. We transport the qudit label from left
to right on the cap, producing a phase ζ , which can be interpreted as
a Fourier transform relation, see [12]. The cap has the form

α = ζα
2

α .

The related cup diagram represents a measurement of the qudit. It
also satisfies a Fourier parafermion relation
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α = ζ−α2 α
.

We represent the adjoint * diagrammatically as

∗ : 1 d−1
. (4)

More generally, the adjoint * of a product comes from its vertical re-
flection,

∗

X

Y
=

X∗

Y ∗

.

2.3. Trace. The normalized trace tr(·) is represented diagrammati-
cally as

tr

( )
= 1

δ
=1,

tr

(
k

)
= 1

δ k =0 for 1 ≤ k ≤ d− 1 .

Here δ =
√
d represents the circle diagram constant,

δ =
.

2.4. Inner Product. The standard, or computational, basis of the Zd

graded Hilbert space Hd(m) is |i1i2 · · · im〉 ≡ |i1〉⊗ |i2〉 ⊗ · · · ⊗ |im〉, for
0 6 i1, i2, . . . , im 6 d−1. This vector is graded by

∑m

k=1
ik mod d. We

represent this vector diagrammatically with

|i1i2 · · · im〉 replaced by
i1

i2
· · ·

im

. (5)

The inner product is represented diagrammatically with
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〈x|y〉 replaced by

· · · m
x∗
· · · m
y

· · · m

· · ·

(6)

for x, y ∈ Hd(m).

2.5. Partial Trace. Planar parafermion algebras are half-braided, al-
lowing a partial trace to be defined. The partial trace trj1,j2,··· ,jk(·) for
1 ≤ j1, j2, · · · , jk ≤ m is represented diagrammatically as

trj1,j2,··· ,jk

( · · ·

· · ·
X

)
= 1

δk X j1 j2 · · · jk

.

On the right hand side the j1, j2, · · · , jk strings are closed to form
caps. The nonclosed strings are always under the caps. Moreover, the
strings were closed clockwise from top to bottom in the illustration.
The spherical condition allows strings to be closed counterclockwise
from top to bottom. See §2.2 of [12] for details and the definition of
the spherical condition.

2.6. Measurement. Ameasurement of the j1, j2, · · · , jk strings is rep-
resented diagrammatically as



QUDIT ISOTOPY 7

j1 j2
· · ·

jk

. (7)

To measure we place the meter in (2)

below the j1, j2, · · · , jk strings,

j1 j2
· · ·

jk .

The meter designates that the j1, j2, · · · , jk strings are to be closed from
top to bottom to form caps. We proceed by removing the meter from
the diagram and closing the j1, j2, · · · , jk strings, as discussed above
for the partial trace.
In the following example we illustrate a measurement for parafermions

of order d. Consider three parafermions in the computational basis

i1
i2

i3

.

Suppose we want to measure the first two tensor factors. We place the
meter under the first two strings as illustrated below,

i1
i2

i3

.

The meter under the first two strings designates that those strings are
closed to form caps such that

1

δ2
i1 i2

i3

.

3. Particles

For fermions and parafermions the parafermionic Fock space Hd(m)
is isomorphic to them-qudit space Cdm , where d denotes the parafermion
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order and m is the number of modes. The choice of d = 2 is the stan-
dard Fock space for m fermionic modes, which is isomorphic to the
m-qubit space [17].
The notion of fermionic entanglement for pure states was analyzed

in [5], whereby product states are those that one can write as a tensor
product in the Fock representation. This definition of entanglement
naturally generalizes to the case of parafermionic pure states. We refer
to this generalization as parafermionic entanglement.

3.1. The Braid. Effects of braiding in field theory and quantum Hall
systems were considered extensively by Fröhlich, e.g. [9]. Diagram-
matic notation in quantum information theory originated in the quan-
tum circuit model of Deutsch [7], although without the consideration of
topology. For higher dimensional quantum information in this frame-
work the definition of quantum gates requires several choices. Alter-
natively, the unitary braid operator in Figure 3 canonically generates
maximal fermionic and parafermionic entanglement for arbitrary finite
dimensions. See §6.5 of [12] for details and the definition of the braid

≡ ω−

1

2√
d

∑d−1

k=0

k
−k

Figure 3. Braid diagram for entanglement.

where ω = 1√
d

∑d−1

j=0
ζj

2

. We note that the braid has the special prop-

erty that qudit generators can move under the braid crossing as illus-
trated in Figure 2.
The braid is unitary, so the adjoint braid equals the inverse braid.

Diagrammatically the adjoint is obtained by a vertical reflection, hence
the inverse braid is

≡ ω
1

2√
d

∑d−1

k=0 k
−k

. (8)

The inverse braid acts by canonically disentangling fermionic and parafermionic
states of arbitrary finite dimension.
In the following example we illustrate maximal entanglement for the

fermionic case d = 2. Consider the two-qubit space

C4 = SpanC

{

,
1
,
1

, 1
−1

}

,
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in which the braid acts on the basis by

= ω−

1

2√
2

(
− 1

−1
)

,
(9)

1

= ω
−

1

2√
2

(
1 − 1

)

,
(10)

1

= ω−

1

2√
2

(
1+1

)

,
(11)

1
−1

= ω
−

1

2√
2

(
1
−1+

)

.
(12)

In quantum computation the braid is “imprimitive” in the sense of
the Brylinskis, since it is entangling. This result yields a partial topo-
logical quantum computer for fermions and parafermions. Additionally,
the braid may be applied to diagrammatically construct several quan-
tum information protocols, which utilize entanglement as a resource.

4. Qudit X, Y, Z Matrices

One can express the qudit Pauli operators X, Y, Z that satisfy the
relations

Xd = Y d = Zd = 1 , (13)

Y X = q XY , ZY = q Y Z , and XZ = q ZX . (14)

Here q = e
2πi

d . These matrices must also satisfy a second set of relations
defined in terms of a square root ζ = q

1

2 for which ζd
2

= 1, namely

XY Z = Y ZX = ZXY = ζ−1 . (15)

In §4 of [12] we give two different solutions X̂, Ŷ , Ẑ for X, Y, Z in
terms of four qudit generators c1, c2, c3, c4. In §5 of that paper we give
a diagrammatic interpretation for these operators. Our first solution
has the form

X̂ = ζ c−1

1
c4 , Ŷ = ζ c2c

−1

4
, Ẑ = ζ c−1

3
c4 . (16)

These matrices satisfy relations (13)–(14), but they do not identically
satisfy (15).
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As explained in [12], the product X̂Ŷ Ẑ has the form

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = ζ−1γ , where γ = qc−1

1
c2c

−1

3
c4 . (17)

These relations also show that the unitary grading matrix γ commutes

with X̂, Ŷ , Ẑ. Hence these matrices act on the eigenspaces of γ.
One achieves the missing relations (15) by restricting to the subspace
for which the grading γ has eigenvalue +1. The solution (16) is a
generalization of the d = 2 map that is common in condensed-matter
physics.
Our second solution is

X̂ = ζ c−1

1
c2 , Ŷ = ζ c1c

−1

3
, Ẑ = ζ c−1

1
c4 . (18)

These matrices X̂ , Ŷ , Ẑ also satisfy the relations (13)–(15) on the
same eigenspace of γ. One can perform this construction at each one
of various sites labelled by a subscript j, giving rise to a representation
of operators X̂j, Ŷj, Ẑj at each site, and that mutually commute at
different sites.
Diagrammatically our two solutions (16) and (18) lead to very differ-

ent looking models, which in §6 we call four-string models (each string
representing a qudit) of Type I and Type II. In the related paper [12],
we give details and develop these results in a more general context.

5. Protocols

5.1. Entanglement distribution. We apply the braid to construct
the entanglement distribution protocol. Consider the computational
basis for two parafermions of order d,

i1
i2 for 0 ≤ i1, i2 ≤ d− 1.

We act with the braid of Figure 3 to generate maximal entanglement,
namely

i1
i2

= ω
−

1

2√
d

∑d−1

k=0

k + i1

−k + i2
. (19)

The special case of fermions was shown in (9)–(12). The remaining
step of the protocol involves distribution of the entanglement through
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a noiseless quantum channel [18]. Such a channel leaves (19) invariant.
Physically the distribution is performed by a variety of methods [1, 6].

5.2. Entanglement-swapping. We can also apply the braid to con-
struct the entanglement-swapping protocol. This protocol inputs four
disentangled fermionic or parafermionic states, and maximally entan-
gles two of the states without trivially braiding them. Physically these
entangled states do not need to share any common past [20].
Consider the diagram below, which entangles the first and second

strings, and it entangles the third and fourth strings. Then, it disen-
tangles the second and third strings with the inverse braid:

. (20)

We proceed by placing the meter, introduced in §2.6, under the second
and third strings of (20), as illustrated below

. (21)

We claim that (21) acts by maximally entangling the leftmost and
rightmost input states as desired. Here we use the relations in §6.5 of
[12].
We remove the meter in (21), closing the second and third strings to

form caps as illustrated below

1

δ2

. (22)

Isotopy is a property of parafermion planar algebra. This topological
notion simplifies the computation of (22) and reduces it to a scalar mul-
tiple of the braid. It permits us to move the strings in three-dimensional
space. We note that the red string under the Reidemeister moves be-
comes the braid’s over crossing. We use the second Reidemeister move
on (22) to obtain
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1

δ2

. (23)

Application of the second and third Reidemeister moves simplifies the
diagram above to

1

δ2

. (24)

The braid and its inverse in (24) have opposite coefficients by the first
Reidemeister move, reducing the diagram to

1

δ2 . (25)

Therefore, the entanglement-swapping diagram in (21) maximally en-
tangles the leftmost and rightmost input states without trivially braid-
ing them. We note that in contrast to the topological moves used that
the algebraic approach of expanding the braid into a sum of the basis
leads to a complicated computation for (22).
The entanglement-swapping protocol with braids holds for arbitrary

finite dimensions. In Figure 4 we illustrate the fermionic case d = 2.

in place of

H •

• H

H •

Figure 4. Entanglement-swapping with braids on the
left, and a quantum circuit on the right.

Remark: Pictorial representation of other protocols, such as telepor-
tation, superdense coding, and the EPR protocol for quantum key dis-
tribution, could be studied by these methods.
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6. Different models for quantum information

We contrast one-string, two-string, and four-string models, in order
to represent quantum information in terms of diagrams. The qudits
are given by Majoranas, parafermions, or bosons, respectively.

6.1. The One-String Model. In the bulk of this paper, we realized a
qudit by one labeled string. Transformations on m qudits were realized
by diagrams with m input points and m output points. We call this
representation of quantum information the one-string model. In this
model the Hilbert space is Zd graded. So, the transformations act on
different components as the graded tensor product. We note that the
diagrams used in the previous sections, such as the braid, are zero
graded, or globally gauge invariant. Thus, the twisting scalar qαβ = 1,
which reduces the graded tensor product to the usual tensor product.

6.2. The Type I, Two-String Model. For the two-string models,
each qudit is a parafermion. In the type I, two-string model, we realize
a qudit by one labeled cap

k .

Here 0 ≤ k ≤ d− 1. We represent m-qudits by

k1
k2 · · · km

.

A transformation on m-qudits is represented by

· · ·

· · ·
X

2m

2m .

The one-string model can be embedded into the type I two-string
model by making the following replacements:

Qudit : k →
k ,

(26)

Transformation :

· · ·

· · ·
X →

· · ·

· · ·
X

,
(27)
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Measurement : →
. (28)

6.3. The Type II, Two-String Model. In the type II, two-string
model, we represent m-qudits by labeled caps

kmk2

···

k1 .

A transformation on m-qudits is represented by

· · ·

· · ·
X

2m

2m .

The one-string model can be embedded into the type II two-string
model by replacements of a transformation similar to (27), and by using

kmk2

···

k1

X

,
(29)

and the measurement

··
·

.
(30)

6.4. The Four-String Model. For the four-string model, each qudit
is bosonic. In other words a qudit always has particle-antiparticle pairs
that yield a total grading zero. For the type I four-string model, we
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realize a qudit by two labeled caps. We represent m-qudits by the
picture:

k1 −k1 k2 −k2 · · · km −km .

Here 0 ≤ ki ≤ d− 1.
For the type II four-string model, we represent m-qudits by the dia-

gram:

−k1k1 −k2k2 · · · −kmkm .

Again 0 ≤ ki ≤ d− 1.
A transformation on a single qudit is a zero graded diagram repre-

sented by

X

.

A transformation on m-qudits is a linear sum of tensor products of m
single qudit transformations represented by

∑
i Xi1 Xi2 · · · Xim Xij is zero graded

.

We note that the four-string model is different from the one-string
model and the two-string model, where all diagrams with proper inputs
and outputs are transformations on qudits. In the four-string model
we are interested in diagrams that preserve the subspace spanned by
qudits, diagrams given by caps. Consider the following diagrammatic
example, which is not a transformation on 2-qudits

.

Let us construct some controlled transformations for the type I four-
string model. We define the controlled transformation CA on 2-qudits
as CA|ij〉 = |iAi(j)〉. On a single qudit, matrices X , Y , Z are con-
structed as in (16).
We show that the following double braid S preserves 2-qudits, and

S = C2

Z .
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The proof follows from the qudit-braid relation given in Figure 2:

−i j

=

j −i

= qij
j

−i

= qij
−i

j

= q2ij −i
j

Let bi be the braid on the ith and i+ 1th strings

bi =

i i+ 1 .
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One can obtain qudit matrices X , Y from Z by the conjugation of
braids,

Y = b∗
2
Z∗b2;

X = b∗
1
b∗
2
Zb2b1.

see §5 in [12] for a diagrammatic proof. Thus

C2

Y = b∗
6
S∗b6;

C2

X = b∗
5
b∗
6
Sb6b5.

Therefore, both C2

Y and C2

X preserve the subspace spanned by qudits
and both are presented by braided diagrams.
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