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Abstract

We outline some known relations between classical random fields and quantum fields. In
the scalar case, the existence of a quantum field is equivalent to the existence of a Euclidean-
invariant, reflection-positive (RP) measure on the Schwartz space tempered distributions. Mar-
tin Hairer recently investigated random fields in a series of interesting papers, by studying non-
linear stochastic partial differential equations, with a white noise driving term. To understand
such stochastic quantization, we consider a linear example. We ask: does the measure on the
solution induced by the stochastic driving term yield a quantum field? The RP property yields
a general method to implement quantization. We show that the RP property fails for finite
stochastic parameter λ, although it holds in the limiting case λ =∞.
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I Introduction

We outline the relation between classical random fields and quantum fields. In the scalar case, the
existence of a quantum field is equivalent to the existence of a Euclidean-invariant, reflection-positive
measure (RP) on tempered distributions on space-time. We review some results in constructive
quantum field theory, and their relation to the development of renormalization group methods.

Martin Hairer recently investigated random fields in a series of interesting papers, by studying
non-linear stochastic partial differential equations with a white noise driving term. To understand
properties of such stochastic quantization, we consider an elementary example—the massive free
(linear) Euclidean field—and the corresponding family of Gaussian measure dµλ. Here λ denotes
the stochastic parameter.

We ask: does the measure dµλ on random fields yield a corresponding quantum field? The RP
property enables the standard method to obtain a quantization. In §III we demonstrate that the
RP property fails for λ <∞, although it holds in the limiting case λ =∞. We raise the question in
§IV of how one would approximate dµλ in the non-linear case in order to obtain an approximation
that preserves RP.

I.1 The Free Euclidean Field

The free relativistic quantum field ϕ(x) is a Wightman field on a Fock-Hilbert space H. It arises
from the Osterwalder-Schrader quantization of the Gaussian measure dµC(Φ) with characteristic
function

SC(f) = e−
1
2〈f̄ ,Cf〉L2 , where C = (−∆ +m2)−1 . (I.1)

Here space-time is d-dimensional, and one requires m2 > 0 if d = 1, 2. This field was introduced
by Kurt Symanzik [27] as a random field and studied extensively in the free-field case by Edward
Nelson [20], and later by many others. It is well-understood that such a random field is equivalent
to a classical field acting on a Euclidean Fock space E with no-particle state ΩE, see for example
[12]. In terms of annihilation and creation operators satisfying [A(k) , A(k′)∗] = δ(k − k′), one has

Φ(x) =
1

(2π)d/2

∫
(A(k)∗ + A(−k))

1

(k2 +m2)1/2
eikxdk . (I.2)

In this framework the field has a Gaussian characteristic functional

SC(f) =
〈
ΩE, eiΦ(f)ΩE

〉
E =

∫
S′
eiΦ(f)dµC(Φ) . (I.3)

Nelson’s Markov field construction is not sufficiently robust to work for non-Gaussian examples,
for the global Markov property required in Nelson’s construction has never been established for the
known interacting field theories. Furthermore random Markov fields are tied to classical probability
theory, and so they do not accommodate a theory of fermions.

Konrad Osterwalder and Robert Schrader solved this problem in 1972 when they discovered the
fundamental reflection positivity property, [24, 25]. This construction is so simple and beautiful, it
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should be a part of every book on quantum theory. Unfortunately that must wait for a number of
new books to be written!

I.2 Reflection Positivity and Osterwalder-Schrader Quantization

The connection of dµC(Φ) to quantum field theory is given through its property of reflection-
positivity. There is a similar property for fermion fields and for gauge fields, as well as for fields of
higher spin. So reflection positivity can be formulated to connect all known quantum theories with
corresponding classical ones.

One identifies a time direction t for quantization, and writes x = (t, ~x). Let ϑ : (t, ~x) 7→ (−t, ~x)
denote time reflection, and Θ its push forward to S ′(Rd). Then RP requires that for A(Φ) an
element of the polynomial algebra E+ generated by random fields Φ(f) with f ∈ S(Rd

+), one has

0 6 〈A,A〉H = 〈A,ΘA〉E . (I.4)

Let N denote the null space of this positive form and E+/N the space of equivalence classes differing
by a null vector. The Hilbert space of quantum theory H is the completion of the pre-Hilbert space
E+/N , in this inner product. The vectors in H are called the OS quantization of vectors in E+.

Operators T acting on E+ and preserving N , also have a quantization T̂ as operators on H, defined

by T̂ Â = T̂A. This is summarized in the commuting exact diagram of Figure 1.

0

��

0

��
N T //

Id
��

N
Id
��

E+
T //

∧
��

E+

∧
��

E+/N T̂ //

��

E+/N

��
0 0

Figure 1: OS Quantization of Vectors [A] ∈ E+/N 7→ Â, and of Operators T 7→ T̂ .

I.3 Non-Gaussian Examples

Many families of non-Gaussian measures dµ(Φ) on S ′(Rd) that are Euclidean-invariant and
reflection-positive are known. The first examples were shown to exist in space-time of two di-
mensions, d = 2, by Glimm and Jaffe [6, 7, 8, 9], and Glimm, Jaffe, and Spencer [13, 14, 15, 16].
Additional examples were given by Guerra, Rosen, and Simon [5] and others..
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In the more difficult case of d = 3 space-time dimensions, the only complete example known
is the Φ4

3 theory. Glimm and Jaffe proved that in a finite volume, a reflection-positive measure
exists for all couplings [10]. They showed that one has a convergent sequence of renormalized,
approximating action functionals An whose exponentials e−An when multiplied by the standard
Gaussian measure dµC(Φ) converge weakly. But the limit is inequivalent to the Gaussian. This
limit agrees in perturbation theory with the standard perturbation theory in physics texts for
ϕ4

3. The physics result established in this paper is that the renormalized ϕ4
3 Hamiltonian H in a

finite spatial volume is bounded from below. Joel Feldman and Osterwalder combined the stability
result of [10] with a modified version of the cluster expansions for Euclidean fields [13], to obtain a
Euclidean-invariant, reflection-positive measure on R3 for small coupling [3].

The original stability bound paper [10] took several years to finish. In that paper we developed a
method to show stability in a region of a cell in phase space of size O(1), and to show independence
of different phase space cells, with a quantitative estimate of rapid polynomial decay in terms of
a dimensionless distance between cells. This analysis allowed us to analyze partial expectation of
degrees of freedom associated with the phase cells.

It turned out that the ideas we used overlap a great deal with the “renormalization group”
methods developed by Kenneth Wilson [28], which appeared while we were still developing our
non-perturbative methods for constructive QFT. One major difference in Wilson’s approach, and
what makes it so appealing, is that his methods are iterative. Our original methods were inductive,
using a somewhat different method on each length scale. Wilson achieved this simplicity by ignoring
effects which appeared to be small.

While many persons have attempted to reconcile these two methods, much more work needs to
be done. In spite of qualitative advances, the conceptually-simpler renormalization group methods
have not yet been used to establish the physical clustering properties, that were proved earlier using
the inductive methods. The most detailed studies of Φ4

3 using the renormalization group methods
have been carried out by Brydges, Dimock, and Hurd [1, 2]. My undergraduate student David Moser
gave a nice exposition and also some refinements [23].

II The Stochastic PDE Approach to the Free Field

The idea of quantization through SPDE goes back to Edward Nelson [20, 22] and Parisi-Wu [26].
Recently Martin Hairer reinvestigated these questions and has made substantial progress [17, 18],
as well as in his many other recent works on the ArXiv. The most interesting case is his new look
at the Φ4

3 measure.
In this work we consider only the Gaussian case corresponding to the massive free field. Our

goal is to understand more about the method, and the relation between SPDE and relativistic
quantum field theory. Let ∆ =

∑d
j=1

∂2

∂x2j
denote the Laplacian on Rd, where the Laplacian involves

the Euclidean space-time coordinates ~x = (x1, . . . , xd−1) and a time coordinate xd = t. The SPDE
also involves the auxiliary stochastic parameter λ ∈ R+. The field Φλ(x) satisfies the fundamental
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equation

∂Φλ(x)

∂λ
= −1

2
(−∆ +m2)Φλ(x) + ξλ(x) , where ξλ(x) is white noise. (II.1)

In other words, ξλ(x) has a Gaussian probability distribution with mean zero and with covariance
δ(λ− λ′)δ(x− x′). Let dνλ(ξ) denote this Gaussian measure.

The solutions Φλ(x) to the fundamental SPDE have a distribution dµλ(Φλ) corresponding to
the measure dνλ(ξ). The distribution dµλ(Φ) is Gaussian. It is claimed that

dµC(Φ) = lim
λ→∞

dµλ(Φ) . (II.2)

In this section we verify the form of dµλ and its λ→∞ limit.

II.1 The Classical Heat Kernel

Let Kλ(x, x
′) denote the heat kernel for the related equation, namely the integral kernel of the linear

transformation e−
λ
2 (−∆+m2). In other words the kernel Kλ(x, x

′) satisfies the equation

∂

∂λ
Kλ(x, x

′) =
1

2

(
∆−m2

)
Kλ(x, x

′) , with initial data K0(x, x′) = lim
λ→0+

Kλ(x, x
′) = δ(x− x′) .

(II.3)
Given f(x), the function fλ(x) defined for 0 < λ by

fλ(x) =

∫
Rd

Kλ(x, x
′) f(x′) dx′ =

(
e−

λ
2 (−∆+m2) f

)
(x) =

(
e−

λ
2
C−1

f
)

(x) , (II.4)

satisfies the homogeneous equation

∂fλ(x)

∂λ
= −1

2

(
−∆ +m2

)
fλ(x) , with initial condition f0(x) = lim

λ→0+
fλ(x) = f(x) . (II.5)

The corresponding inhomogeneous equation arises if one is given a forcing term ξλ(x) and desires
to solve the equation

∂fλ(x)

∂λ
= −1

2

(
−∆ +m2

)
fλ(x) + ξλ(x) . (II.6)

The solution with initial data f(x) at λ = 0 is

fλ(x) =

∫
Rd
dx′ Kλ(x, x

′) f(x′) +

∫ λ

0

dα

∫
Rd
dx′ Kλ−α(x, x′) ξα(x′) . (II.7)
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II.2 The Random Field Solution to the SPDE

For each given ξλ(x) the solution to the fundamental equation (II.1) with initial data Φ0(x) is given
by (II.7) as

Φλ(x) =

∫
Rd

Kλ(x, x
′)Φ0(x′)dx′ +

∫ λ

0

dα

∫
Rd
dx′ Kλ−α(x, x′)ξ(x′) . (II.8)

The fact that this is the solution can be verified by differentiating with respect to λ and using the
properties above. Since this solution is linear in ξ, it is clear that the Gaussian distribution of ξ
will yield a Gaussian distribution of Φλ.

II.2.1 First Moment

As ξλ has mean zero, and dνλ(ξ) is a probability measure, the first moment of Φλ(x) equals

〈Φλ(x)〉νλ =

∫
Φλ(x) dνλ(ξ) =

∫
Rd
dx′ Kλ(x, x

′)Φ0(x′) . (II.9)

One could also write

〈Φλ(x)〉νλ =
(
e−

λ
2 (−∆+m2) Φ0

)
(x) . (II.10)

It is desirable to have the mean of dµλ(Φ) to be zero. So we assume that Φ0 = 0. Then 〈Φλ(x)〉νλ = 0.
Otherwise we subtract the mean to obtain this result. On the other hand, it is clear that in the
λ → ∞ limit the mean (II.10) will tend to zero. Thus the initial data will be wiped out in the
limiting distribution, and whether or not we start with mean zero, we obtain mean zero in the limit.

II.2.2 Second Moment

The second moment of Φλ(x) at a given λ defines the covariance Dλ of the distribution. We claim
that covariance for Φλ(x) is

Dλ = (I − e−λC−1

)C . (II.11)

If one considers the action of Dλ as a transformation on L2, then the self-adjoint, positive transfor-

mation (−∆ +m2) > m2, yields
∥∥∥e−λC−1

∥∥∥ 6 e−λm
2
. One infers that

0 6 Dλ , (II.12)

so Dλ is a bone-fide covariance.
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To show that Dλ has the form claimed, calculate

Dλ(x, y) = 〈Φλ(x) Φλ(y)〉νλ =

∫
Φλ(x) Φλ(y)dνλ

=

∫ λ

0

dα

∫ λ

0

dβ

∫
Rd
dx′
∫
Rd
dy′ Kλ−α(x, x′)Kλ−β(y, y′) 〈ξα(x′)ξβ(y′)〉νλ

=

∫ λ

0

dα

∫ λ

0

dβ

∫
Rd
dx′
∫
Rd
dy′ Kλ−α(x, x′)Kλ−β(y′, y) δ(α− β) δ(x′ − y′)

=

∫ λ

0

dα K2(λ−α)(x, y)

=
(
I − e−λC−1

)
C(x, y) , (II.13)

as claimed. Here we use the symmetry and multiplication law for the semigroup e−λC
−1

with integral
kernel Kλ(x, y).

It is clear that Dλ(x, y) has the same local singularity on the diagonal as C(x, y), for the
difference

C(x, y)−Dλ(x, y) =
(
e−λ(−∆+m2)C

)
(x, y) (II.14)

is the Fourier transform of a multiple of e−λ(k2+m2) (k2 +m2)
−1

. So it is an element of Schwartz
space for every 0 < λ.

II.2.3 General Moments

It follows from the Gaussian property that the odd moments of dµλ(Φ) vanish, and that the even
moments yield

Sλ(f) =
〈
eiΦλ(f)

〉
νλ

= e−
1
2〈f̄ ,Dλf〉L2 . (II.15)

II.3 The Limit λ→∞
The measure dµλ is a Gaussian on S ′(Rd), with mean 0 and covariance (II.11). Under what con-
ditions does this family of Gaussian measures converge to a limiting measure dµ as λ → ∞? This
question is answered in [4], and a sufficient condition for convergence is the convergence Dλf → Cf
in the topology of the Schwartz space S for every f ∈ S.

It is clear that in the sense of the weak limit of operators on S(Rd), the operators e−λC
−1
C

converge in the S topology to zero as λ → ∞. As a consequence Dλ →S C and as the weak limit
of measures

lim
λ→∞

Sλ(f) = SC(f) = e−
1
2〈f̄ ,Cf〉L2 , and lim

λ→∞
dµλ(Φ) = dµC(Φ) . (II.16)
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III The Measure dµλ is Not Reflection Positive

III.1 RP for the Gaussian with Covariance Dλ

For a Gaussian measure dµλ(Φ) with covariance Dλ, it is well known that the RP property (I.4)
for dµλ is equivalent to RP for the covariance Dλ, see for example [12]. The RP property for Dλ

on Rd
+, with respect to time reflection ϑ means: for each function f ∈ L2(Rd

+) supported in the
positive-time half-space Rd

+ = Rd−1 × R+,

0 6 〈f, ϑDλf〉L2(Rd) . (III.1)

This form defines the pre-inner product on the one-particle space L2(Rd
+) as

〈f, f〉H = 〈f, ϑDλf〉L2(Rd) . (III.2)

(Note that RP of a covariance on Rd ensures RP on various compactified space-times, such as RP
on the torus Td [19].)

It is also well-known that C = (−∆ +m2)−1 is reflection positive with respect to ϑ. This can be
verified on Rd by analysis of the Fourier transform. On subdomains of Rd, or in other geometries,
it is convenient to note the equivalence between RP for C and the monotonicity of covariance
operators CD 6 CN with Dirichlet and with Neumann boundary data on the reflection plane [11].

In general one cannot expect to recover the reflection-positivity property without preserving
positivity in all intermediate approximations. So we ask whether the covariance Dλ is reflection
positive for 0 < λ <∞. In order to establish a counterexample to RP for the Gaussian measure, it
is only necessary to find one function f , supported at positive time, for which

〈f, ϑDλ f〉L2 < 0 . (III.3)

We now give such a counterexample to RP for dµλ.

III.2 RP Fails if d = 1 and 1
2
< λm2 < ∞

To make things as simple as possible, we first inspect the case d = 1. Since

‖f‖2
H = 〈f, ϑDλf〉L2 6 〈f,Dλf〉L2 6 〈f, Cf〉L2 = 〈f, f〉H−1

, (III.4)

the inner product (III.2) extends by continuity from L2 to the Sobolev space f ∈ H−1(Rd
+). For d = 1

the Sobolev space contains the Dirac measure δt localized at 0 6 t, so in our example we choose f
to be a linear combination of two Dirac delta functions localized at two distinct non-negative times
0 6 s < t.

Define
f(u) = ems δs(u)− emt δt(u) , (III.5)

so
(ϑf)(u) = ems δs(−u)− emt δt(−u) = ems δ−s(u)− emt δ−t(u) . (III.6)
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We choose f of this form, as it is in the null space of the RP inner product for the covariance C.
In fact

〈f, ϑCf〉L2 = 〈ϑf, Cf〉L2 =
〈
(emsδ−s − emtδ−t), C(emsδs − emtδt)

〉
L2

= e2ms 〈δ−s, Cδs〉+ e2mt 〈δ−t, Cδt〉
−em(t+s) 〈δ−s, Cδt〉 − em(t+s) 〈δ−t, Cδs〉

=
1

2m
(1 + 1− 1− 1) = 0 . (III.7)

Hence

〈f, ϑDλf〉L2 = −e−λm2 〈
f, ϑeλ∆Cf

〉
L2 . (III.8)

We infer that f gives a counterexample to RP for λm2 <∞ in case for some s, t,

0 <
〈
ϑf, eλ∆Cf

〉
L2 . (III.9)

Define

Wλ,m = (4πλ)1/2 2meλ∆C . (III.10)

Recall that the operator 2mC has integral kernel

2mC(u, s) = e−m|u−s| . (III.11)

Furthermore the operator (4πλ)1/2 eλ∆ has the integral kernel(
(4πλ)1/2 eλ∆

)
(t, u) = e−

(t−u)2
4λ . (III.12)

Thus the integral kernel Wλ,m(t, s) = Wλ,m(t− s) of Wλ,m equals

Wλ,m(t− s) =

∫ ∞
−∞

du e−
(t−s−u)2

4λ
−m|u| = Wλ,m(s− t) . (III.13)

The second equality in (III.13) shows that Wλ,m, which is real, is also hermitian. Remark that

Wλ,m(t) = m−1Wλm2,1(mt) . (III.14)

Thus without loss of generality we may study W (t) = Wλ,1(t).

III.2.1 An Indicative Bound

One can rewrite the condition for violation of RP in (III.9) in terms of W . If for some 0 6 s < t,

es+tW (s+ t) <
1

2

(
e2sW (2s) + e2tW (2t)

)
, (III.15)
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then RP would fail. With the Schwarz inequality, and the comparison of geometric and arithmetic
means one has (III.16). While close, as one can take exp ((t− s)2/4λ) ≈ 1, we need more.

et+sW (s+ t) = et+s
∫ ∞
−∞

du e−
(s+t−u)2

4λ e−|u| = et+s e−
(s+t)2

4λ

∫ ∞
−∞

du e−
u2

4λ
−|u| e

su+tu
2λ

6 et+s e−
(s+t)2

4λ

(∫ ∞
−∞

du e−
u2

4λ
−|u|e

su
λ

)1/2(∫ ∞
−∞

du e−
u2

4λ
−|u|e

tu
λ

)1/2

= et+s e
(s−t)2

4λ

(∫ ∞
−∞

du e−
(u−2s)2

4λ
−|u|
)1/2(∫ ∞

−∞
du e−

(u−2t)2

4λ
−|u|
)1/2

= et+s e
(s−t)2

4λ W (2s)1/2W (2t)1/2 6
1

2
e

(s−t)2
4λ

(
e2sW (2s) + e2tW (2t)

)
.(III.16)

III.2.2 A Numerical Check

We have used Mathematica to make a numerical check of whether f violates RP in case s = 0 and
λ = 1. We have plotted the function

F (t) =
1

2

(
W (0) + e2tW (2t)

)
− etW (t) , with W (t) =

∫ ∞
−∞

du e−
(t−u)2

4
−|u| . (III.17)

If F (t) > 0 for any positive t, then RP fails to hold.
The Mathematica plot of F (t) appears in Figure 2. Clearly there are values of t ∈ (0, 1.5) for

which F (t) is positive.1 So this indicates for the value of λ = m = 1 that we tested, RP does not
hold for Φλ(t) in the measure dµ(Φλ).

Figure 2: RP of Dλ requires F (t) = 1
2
W (0) + 1

2
e2tW (2t)− etW (t) 6 0 for all 0 6 t.

1I am grateful to Alex Wozniakowski for assisting me to use Mathematica to test whether F (t) changes sign.



12 Arthur Jaffe

III.2.3 The Proof

Since the RP violation occurs for small t, we can give a proof of the existence of the counterexample
expanding F (t) as a power series in t. First we use the form (III.13) to extend W (t) (defined here
for positive t as an even function to negative t.) Then it is clear from the form of F (t), that F (t)
is an analytic function at t = 0. Therefore the sign of F (t) for small 0 < t is determined by the
first non-zero term in the power series at t = 0, and this will be the term of second order. For this
calculation we introduce the parameter λ. We show that RP is violated for 1

2
6 λm2.

From (III.13) one has

Wλ(t) = Wλ(0) +
t2

2
W ′′
λ (0) +O(t4) , (III.18)

and both

0 < Wλ(0) , and W ′′
λ (0) = cλ −

1

2λ
Wλ(0) , with 0 < cλ =

1

4λ2

∫ ∞
−∞

du u2e−
u2

4λ
−|u| . (III.19)

The corresponding expansion for F (t) is

F (t) =
1

2
Wλ(0) +

1

2

(
1 + 2t+ 2t2

) (
Wλ(0) + 2t2W ′′

λ (0)
)

−
(

1 + t+
t2

2

)(
Wλ(0) +

t2

2
W ′′
λ (0)

)
+O(t3)

=
t2

2
(Wλ(0) +W ′′

λ (0)) +O(t3)

=
t2

2

(
cλ +

(
1− 1

2λ

)
Wλ(0)

)
+O(t3) . (III.20)

As 0 < cλ,Wλ(0), the leading non-zero coefficient in F (t) is strictly positive for 1
2
6 λ. (It is also

valid for some λm2 < 1
2
.) Therefore there is an ε > 0 such that for t ∈ (0, ε),

0 < F (t) , for t ∈ (0, ε) . (III.21)

Hence RP does not hold for 1
2
6 λ < ∞. Reinterpreting this with respect to the scaled function

Wλ,m(t) according to (III.14), we infer: RP fails for 1
2
6 λm2 <∞.

III.3 RP Fails if 1 < d and λ,m2 < ∞
For 1 < d we show that RP for dµλ(Φλ) fails for all λm2 ∈ (0,∞). Denote the Sobolev-space inner
products on Rd and Rd−1 respectively as

〈f1, f2〉−1 = 〈f1, C f2〉L2(Rd) , and 〈h1, h2〉− 1
2

=

〈
h1,

1

2µ
h2

〉
L2(Rd−1)

. (III.22)
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In this case µ =
√
−~∇2 +m2. We also denote µ(~p) =

√
~p 2 +m2 as the multiplication operator in

Fourier space given by µ.
Start by choosing a real, spatial test function h(~x) ∈ S(Rd−1), whose Fourier transform h̃(~p) has

compact support. (Reality only requires h̃(~p) = h̃(−~p).) Define the family of functions

hT (~x) =
1

(2π)(d−1)/2

∫
Rd−1

eTµ(~p) h(~p) ei~p·~x d~p ∈ S(Rd−1) , with h0 = h , and 0 6 T . (III.23)

Let δS denote the one-dimensional Dirac measure with density δS(t) = δ(t − S). For 0 6 S < T
define a space-time one-particle function f(x) = fS,T (x) by

f = hS ⊗ δS − hT ⊗ δT . (III.24)

Note that f is in the null space of the RP form defined by C, relative to the time-reflection ϑ.
In fact

〈f, ϑf〉−1 = 〈f, ϑCf〉L2

=
〈
hS, e

−2Sµ hS
〉
− 1

2

+
〈
hT , e

−2Tµ hT
〉
− 1

2

−
〈
hS, e

−(S+T )µ hT
〉
− 1

2

−
〈
hT , e

−(S+T )µ hS
〉
− 1

2

= 〈h, h〉− 1
2

+ 〈h, h〉− 1
2
− 〈h, h〉− 1

2
− 〈h, h〉− 1

2
= 0 . (III.25)

Hence our test of RP relies whether 〈f, f〉H is non-negative, where

〈f, f〉H = 〈f, ϑDλf〉L2 =
〈
f, ϑ (I − e−λ(−∆+m2))Cf

〉
L2

= −
〈
ϑf, e−λ(−∆+m2)Cf

〉
L2

. (III.26)

Expanding f according to (III.24) yields four terms, each proportional to

F (t1, t2) =
〈

(ht1 ⊗ δ−t1) , e−λ(−∆+m2) C (ht2 ⊗ δt2)
〉
L2

= 〈(gt1 ⊗ δ−t1) , X (gt2 ⊗ δt2)〉L2 . (III.27)

Here gt = e
1
2
λ~∇2

ht ∈ S(Rd−1), and X =

(
e−λ(− ∂2

∂t2
+m2) C

)
. Note that ϑδt1 = δ−t1 , as (ϑδt1)(u) =

(ϑδ)(u− t1) = δ(−u− t1) = δ(u+ t1) = δ−t1(u). However ϑ does not affect the time in ht1 .
The integral kernel for X is real and has the form

X(x, x′) = (4πλ)−1/2e−λm
2

∫
R4

dud~u e−
(t−u)2

4λ δ(~x− ~u)

(
1

2µ
e−|u−t

′|µ
)

(~u− ~x′)

= (4πλ)−1/2e−λm
2

∫
R
du

(
1

2µ
e−

(t−t′−u)2
4λ

−|u|µ
)

(~x− ~x′) . (III.28)

Thus

F (t1, t2) = (4πλ)−1/2e−λm
2

∫ ∞
−∞

du e−
(t1+t2−u)

2

4λ

〈
e−|u|µgt1 , e

−|u|µgt2
〉
− 1

2

. (III.29)
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Since f is real and the kernels are real, F (t1, t2) = F (t2, t1) is real. Also it is clear from inspection

that the compact support of h̃ ensures that F (t1, t2) extends in a neighborhood of (t1, t2) = (0, 0)
to a complex analytic function of (t1, t2) with a convergent power series at the origin.

Combining these remarks,

〈f, f〉H = − (F (S, S) + F (T, T )− F (S, T )− F (T, S)) . (III.30)

As in §III.2.3, we take S = 0 and 0 < T . Define F (T ) by

〈f, f〉H = −(4πλ)−1/2e−λm
2

F (T ) . (III.31)

Then

F (T ) = (4πλ)1/2eλm
2

(F (0, 0) + F (T, T )− 2F (0, T )) . (III.32)

The function f provides a counterexample to RP if for any T one has both 0 < F (T ) and
λ,m2 <∞. Expand F (T ) as a power series at T = 0. We claim that F (0) = F ′(0) = 0, so

F (T ) =
T 2

2
F ′′(0) +O(T 3) . (III.33)

Clearly F (0) = 0. Also

F ′(T ) = −1

λ

∫ ∞
−∞

du (2T − u)e−
(2T−u)2

4λ

〈
e−|u|µgT , e

−|u|µgT
〉
− 1

2

+2

∫ ∞
−∞

du e−
(2T−u)2

4λ

〈
e−|u|µgT , µ e

−|u|µgT
〉
− 1

2

+2
1

2λ

∫ ∞
−∞

du (T − u)e−
(T−u)2

4λ

〈
e−|u|µg0, e

−|u|µgT
〉
− 1

2

−2

∫ ∞
−∞

du e−
(T−u)2

4λ

〈
e−|u|µg0, µ e

−|u|µgT
〉
− 1

2

. (III.34)

Taking T = 0, the second and last terms cancel, leaving an integrand that is an odd function of u.
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Therefore F ′(0) = 0. Likewise the second derivative equals

F ′′(T ) = −2

λ

∫ ∞
−∞

du e−
(2T−u)2

4λ

〈
e−|u|µgT , e

−|u|µgT
〉
− 1

2

+
1

λ2

∫ ∞
−∞

du (2T − u)2e−
(2T−u)2

4λ

〈
e−|u|µgT , e

−|u|µgT
〉
− 1

2

−2

λ

∫ ∞
−∞

du (2T − u)e−
(2T−u)2

4λ

〈
e−|u|µgT , µ e

−|u|µgT
〉
− 1

2

−2

λ

∫ ∞
−∞

du (2T − u)e−
(2T−u)2

4λ

〈
e−|u|µgT , µ e

−|u|µgT
〉
− 1

2

+4

∫ ∞
−∞

du e−
(2T−u)2

4λ

〈
e−|u|µgT , µ

2 e−|u|µgT
〉
− 1

2

+
1

λ

∫ ∞
−∞

du e−
(T−u)2

4λ

〈
e−|u|µg0, e

−|u|µgT
〉
− 1

2

− 1

2λ2

∫ ∞
−∞

du (T − u)2e−
(T−u)2

4λ

〈
e−|u|µg0, e

−|u|µgT
〉
− 1

2

+
1

λ

∫ ∞
−∞

du (T − u)e−
(T−u)2

4λ

〈
e−|u|µg0, µ e

−|u|µgT
〉
− 1

2

+
4

λ

∫ ∞
−∞

du (T − u)e−
(T−u)2

4λ

〈
e−|u|µg0, µ e

−|u|µgT
〉
− 1

2

−2

∫ ∞
−∞

du e−
(T−u)2

4λ

〈
e−|u|µg0, µ

2 e−|u|µgT
〉
− 1

2

. (III.35)

Thus for T = 0,

F ′′(0) =

∫ ∞
−∞

du e−
u2

4λ

〈
e−|u|µg0,

(
2µ2 − 1

λ
+

u2

2λ2

)
e−|u|µg0

〉
− 1

2

. (III.36)

The positivity of F ′′(0) would be a consequence of the expectation of the operator 2µ2 − 1
λ

+ u2

2λ2

being positive in the vectors e−|u|µ g0 under consideration.
The integral of the third term, u2/2λ2, is strictly positive for all λ < ∞. Furthermore µ acts

in Fourier space as multiplication by µ(~p), so m 6 µ, and 0 6 2µ2 − λ−1 if 1
2
6 λm2. This agrees

with the conclusion of §III.2.3. But as 1 < d, we can assume that the support of h̃ (which is also

the support of e−|u|µ(~p)g̃0) lies outside the ball of radius (2λ)−1/2. This entails λ−1 6 2µ(~p)2 on the

support of h̃, and 0 6 2µ2 − λ−1 on the domain of functions h we consider.
Therefore we infer for such h that 0 < F ′′(0). Consequently for small, strictly positive T , one

has 0 < F (T ). Assuming λ,m2 < ∞, the relation (III.31) shows that 〈f, f〉H < 0. Hence we
conclude that RP fails in 1 < d for all 0 < λ,m2 <∞.
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IV An Interesting Fundamental Question

When constructing a non-Gaussian dµ(Φ) from a SPDE, how might one establish RP?
The answer to this question is essential, for only with RP can one make the connection between
probability theory and relativistic quantum field theory. And it is difficult to imagine in a situation
where one does not have an explicit form for the answer (as in the Gaussian case of the free field),
that one can establish a positivity condition unless it holds in each approximation. The result
presented here clearly generalize to non-Gaussian measures whose moments depend continuously
on the non-linearity. So can one modify the SPDE procedure in order to preserve RP for every
intermediate λ?
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