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Abstract. We define the notion of a planar para algebra, which arises naturally from
combining planar algebras with the idea of ZN para symmetry in physics. A subfactor
planar para algebra is a Hilbert space representation of planar tangles with parafermionic
defects, that are invariant under isotopy. For each ZN , we construct a family of subfactor
planar para algebras which play the role of Temperley-Lieb-Jones planar algebras. The
first example in this family is the parafermion planar para algebra. Based on this example,
we introduce parafermion Pauli matrices, quaternion relations, and braided relations for
parafermion algebras which one can use in the study of quantum information. Two different
reflections play an important role in the theory of planar para algebras. One is the adjoint
operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter
one to define the double algebra and to introduce reflection positivity. We give a new and
geometric proof of reflection positivity by relating the two reflections through the quantum
Fourier transform.
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1. Introduction

We introduce the notion of a planar para algebra, which generalizes the concept of a planar
algebra introduced by Jones [Jon98]. The idea arises naturally from considering fermions or
para symmetry in physics. Mathematically this motivates giving the planar para algebra a
ZN grading. One might think of planar para algebras as a topological quantum field theory
with parafermionic defects [Ati88, Wit88].

The partition function of a planar para algebra is a representation of planar tangles with
parafermionic defects on a vector space invariant under isotopy. Usually we require that those
tangles without boundary are presented by a scalar multiple of the vacuum vector defined
by the empty diagram. When the partition function has the standard positivity property in
planar algebra theory with respect to the vertical reflection, we call the planar para algebra
a subfactor planar para algebra; those planar para algebras are closely related to subfactor
theory.

The fundamental planar algebra is known as the Temperley-Lieb-Jones planar algebra.
The positivity condition for the Temperley-Lieb-Jones planar algebra was proved by Jones’
remarkable result on the rigidity of indices [Jon83]. In Theorem 2.24, we show that for each
group ZN one can construct a planar para algebra which plays the role of the Temperley-
Lieb-Jones planar algebra in the theory of planar para algebras. We prove a similar rigidity
result for the positivity condition in Theorem 8.1 and thereby obtain a family of subfactor
planar para algebras.

For each ZN , the subfactor planar algebra in the family that has the smallest index is
called a parafermion planar algebra, since it is algebraically isomorphic to the parafermion
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algebra with infinitely many generators. We explore other planar para algebra properties of
parafermion algebras in Sections 4 and 6.

The expectation of a parafermion algebra is a tracial state. We can realize the underlying
Hilbert space by the Gelfand-Naimark-Segal construction. The parafermion planar algebra
not only gives a pictorial representation of a parafermion algebra, but it also gives a picture of
the underlying Hilbert space. We give different models to present parafermion Pauli matrices
and the underlying space in terms of diagrams. One model generalizes the representation for
Pauli matrices by Majoranas, commonly used in condensed-matter physics.

Furthermore, we extend the isotopy to the three-dimensional space by introducing braids.
We prove that parafermion planar para algebras are half-braided. The diagrammatic represen-
tation of the underlying Hilbert space is compatible with the braided isotopy. In [JLW16a]
we discuss an application of the isotopy property to quantum information.

A significant ingredient of planar para algebra is the quantum Fourier transform F defined
as a rotation of the diagrams. The action of rotation on various defects are described by
the para degree. For usual planar algebras, a 2π rotation equals the identity. In the case
of planar fermion algebras, the 2π rotation on a fermion has eigenvalues ±1. In the general
case of planar para algebras, the 2π rotation of a ZN parafermion has the eigenvalue e

2πi
N . In

terms of planar para algebras, we define the quantum Fourier transform F on parafermion
algebras as a π

2
rotation of the diagrams. This quantum Fourier transform reduces to the

usual quantum Fourier transform on a special subspace, as explained in §6.4.
The graded commutant of the parafermion algebra on the GNS representation can be

represented pictorially in the parafermion planar algebra. The modular conjugation in Tomita-
Takisaki theory turns out to be a horizontal reflection. In §7 we study reflection-doubled
algebras, leading to the study of the reflection-positivity property [OS73a, OS73b]. This
property is quite important in the context of particle physics and statistical physics, where
it has wide use in establishing existence results in quantum field theory, as well as in the
study of phase transitions. Reflection positivity of parafermion algebras had been proved in
a different context [JP15a, JJ16a, JJ16b], where one finds further references to other papers
on reflection positivity.

In Theorem 7.1 we give a new and geometric proof of reflection positivity that applies
to parafermion algebras as a special case, and in general to subfactor planar para algebras.
In particular, we relate the two notions of positivity mentioned above: C∗ positivity and
reflection positivity. We show that reflection positivity of a Hamiltonian in a subfactor planar
para algebra is a consequence of the C∗ positivity of the quantum Fourier transform of the
Hamiltonian.

The underlying mechanism that leads to reflection positivity relies on the relation between
two different reflections, one is the rotation of the other. In the planar para algebra, a
horizontal reflection Θ defines the double. On the other hand a vertical reflection defines
the adjoint ∗. These two reflections are related by a π

2
rotation, which is how the quantum

Fourier transform enters. We combine rotation and reflection with the isotopy invariance of
the partition function, in order to obtain the reflection positivity property. For parafermion
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algebras, we show in Theorem 7.6 that reflection positivity is equivalent to the positivity of
the coupling constant matrix J0 of the Hamiltonian for interaction across the reflection plane.

2. Planar Para Algebras

2.1. Planar tangles. Our definition of planar para algebras involves planar tangles. These
tangles are similar to the planar tangles in Jones’ original definition of planar algebras [Jon12].
However, for readers who are not familiar with planar algebras, we give the definitions here,
indicating some main distinctive features in color or boldface1.

A planar k-tangle T will consist of a smooth closed output disc D0 in C together with
a finite (possibly empty) set D = DT of disjoint smooth input discs in the interior of D0.
Each input disc D ∈ D and the output disc D0, will have an even number 2kD ≥ 0 of marked
points on its boundary with k = kD0 . Inside D0, but outside the interiors of the D ∈ D,
there is also a finite set of disjoint smoothly embedded curves called strings, which are either
closed curves, or the end points of the strings are different marked points of D0 or of the D’s
in D. Each marked point is the end-point of some string, which meets the boundary of the
corresponding disc transversally.

The connected components of the complement of the strings in
◦
D0\

⋃
D∈DD are called

regions. The connected component of the boundary of a disc, minus its marked points, will
be called the intervals of that disc. Regions of the tangle are shaded (say in gray), or they
are unshaded (say in white). Shading is done in a way that regions whose boundaries meet
have different shading. Intervals have a unique shading, as only one side of any interval lies
in a region. The shading will be considered to extend to the intervals which are part of the
boundary of a region.

To each disc in a tangle there is a distinguished point on its boundary that is not an
end point of a string. The distinguished point is marked by a dollar sign $, placed to the
left of the input disc, or to the right of the output disc. This distinguished point defines a
distinguished interval for each disc.

We denote the set of all planar k-tangles for k ≥ 0 by Tk, and let T = ∪kTk. If the
distinguished interval of D0 for T ∈ T is unshaded, T will be called positive; if it is shaded,
T will be called negative. Thus Tk is the disjoint union of sets of positive and negative planar
para tangles: Tk = Tk,+ ∪ Tk,−.

Definition 2.1. A planar tangle will be called regular if the distinguished point of each disc
is on the left, and the distinguished points of the input discs are ordered vertically. Let RT
denote the set of regular planar tangles.

This means that the x coordinate of each disc is the smallest one among all points on
the boundary of the disc, and the y coordinates of the input discs are pairwise different. Let
y(D) denote the y coordinate of the distinguished point of an input disc D.

1A main difference between planar and planar para algebras is that we mark a distinguished point on the
boundary of each disc, within a distinguished interval. This change is necessary, in order to describe the
precise height of Jones’ symbol $. This height is significant in the definition of our twisted tensor product.
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$

$

$
$

Figure 1. A regular planar 3-tangle

In certain situations one can compose two tangles T and S to obtain a tangle T ◦D S ∈
RT. To make this possible, the output disc of S ∈ RT must be identical to one input disc D
of a T ∈ RT. Furthermore D must be lower than all the $’s above the $ of D, and it must
be higher than the $’s under the $ of D. This makes it possible to find a diffeomorphism of
the plane that moves each disc in T , other than D, to be completely higher or lower than D.
Using this representative of the planar tangle D, one can then define the composition T ◦D S
in the usual way: match the intervals and points of D in S with those of T . Also replace any
closed, contractible string formed in this composition by a scalar δ, which we denote as the
circle parameter.

2.2. Planar para algebras. Let G be a finite abelian group and ω be a bicharacter of G.

Definition 2.2. A (shaded) (G,ω) planar para algebra P• will be a family of Z/2Z-graded
vector spaces indexed by the set N ∪ {0}, having the following properties:

• Let Pn,± denote the ± graded space indexed by n.
• To each regular planar n-tangle T for n ≥ 0 and DT non-empty input discs, there will

be a multilinear map

ZT : ×i∈DTPDi →PD0 , (II.1)

where PD is the vector space indexed by half the number of marked boundary points
of i.
• The Z2 grading of each Pi is taken to be + if the distinguished interval of Di is

unshaded, or − if it is shaded, and similarly for PD0 .

Definition 2.3. The map ZT is called the “partition function” of T and is subject to the
following five requirements:

(i) (RT isotopy invariance) If ϕ is a continuous map from [0, 1] to orientation preserving
diffeomorphisms of C, such that ϕ0 is the identity map and ϕt(T ) ∈ RT, then

ZT = Zϕ1(T ) ,

where the sets of internal discs of T and ϕt(T ) are identified using ϕt, for t ∈ [0, 1].
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(ii) (Naturality) If T ◦D S exists and DS is non-empty

ZT◦DS = ZT ◦D ZS
where D is an internal disc in T .

(iii) (Grading) Each vector space Pn,± is G graded,

Pn,± = ⊕g∈GPn,±,g , and ZT : ⊗i∈DTPi,gi →PD0,
∑
i gi

.

(iv) (Para isotopy) Take Pg = ⊕n,±Pn,±,g for g ∈ G. We have

$

$

...

...

$

x

...

...

y

= ω(g, h)
$

$

...

...

$

...

...

x

y ,

for any x ∈Pg and y ∈Ph

(v) (Rotation) The clockwise 2π rotation of any g graded vector x is ω(g, g)x, i.e.,

x

...

= ω(g, g)x.

Remark 2.4. “Planar algebras” satisfying conditions (i) and (ii) have their own interests.
Conditions (iii), (iv) and (v) are motivated by the discussion of parafermion algebras in
[JP15a, JJ16a, JJ16b].

Remark 2.5. One can remove the condition that the $ is on the left, and introduce the
rotation isotopy for arbitrary angle, not only 2π. However, this makes the definition and
computation more complicated. For convenience, we choose a representative of planar tangles
in the isotopy class by fixing the $ sign on the left.

Remark 2.6. When ω is the constant 1, the planar para algebra is a planar algebra. The zero
graded planar para subalgebra is a planar algebra.

Definition 2.7. A vector x in Pg is called homogenous. The grading of x is defined to be g,
denoted by |x|G, or |x|, if it causes no confusion.

Notation 2.8. Furthermore in case it cannot cause confusion, we omit the output disc and
the $ signs. A vector in Pm,± is called an m-box. Usually we put m strings on the top and
m strings on the bottom. Then the m-box space Pm,± forms an algebra, where we denote
the multiplication of x, y ∈Pm,± diagrammatically by

...

...
x

y
... .

The identity is given by the diagram with m vertical strings, denoted by Im.
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Definition 2.9. We denote the graded tensor product as follows:

x⊗+ y = , x⊗− y = .

If x and y are homogenous, then we infer from para isotopy that x⊗+y = ω(|x|, |y|)x⊗−y.
Under the multiplication and the graded tensor product ⊗+, one obtains a (G,ω) graded
tensor category. The objects are given by zero graded idempotents and the morphisms are
given by maps from idempotents to idempotents. We refer the readers to [ENO05, MPS10]
for the planar algebra case.

Definition 2.10. A planar para algebra is called unital if the empty disc is a vector in
P0,±,0, called the vacuum vector.

Definition 2.11. A unital planar para algebra is called spherical, if dim P0,± = 1 and

= ,

for any 1-box x. Both P0,+ and P0,− are identified as the ground field.

Proposition 2.12. The linear functional on m-boxes is a trace, i.e.,

...

...

y

x

...

=

...

...

y

x
...

.

We call it the (unnormalized) Markov trace.

Proof. It is enough to prove the equation for any homogenous x and y. When the grading
|x|+ |y| is not 0 mod N , both sides are zeros. When the grading |x|+ |y| is 0 mod N , applying
the para isotopy and the 2π rotation of x, we obtain the equality. �

The normalized Markov trace tr on m-boxes is given by 1
δm

. The inclusion from

Pm,± to Pm+1,± by adding one string to the right preserves the normalized trace.
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2.3. Quantum Fourier transforms. The quantum Fourier transform is an important
ingredient in planar (para) algebras. It behaves as a rotation in planar algebras. The
quantum Fourier transform F is defined as the action of the following tangle,

$

...

...
.

This definition is motivated by the quantum Fourier transform on paragroups introduced by
Ocneanu [Ocn88]. We also use other rotations on the m-box space:

• Denote the 2π rotation by ρ2π = F2m.
• Denote the π rotation by ρπ = Fm, which one also calls the contragredient map. Note

ρπ(xy) = ρπ(y)ρπ(x) , and ρπ(x⊗ y) = ρπ(y)⊗ ρπ(x) . (II.2)

• For even m, denote the π
2

rotation by ρπ
2

= F
m
2 . This can also be considered as the

quantum Fourier transform.

We refer the readers to Section 4 in [Liua] and [JLW16b] on the study of the quantum Fourier
transform on subfactor planar algebras.

2.4. Reflections. Two reflections that play distinct roles are reflections about a vertical or
horizontal line. The vertical reflection defines the usual adjoint in a planar para algebra.

Definition 2.13. We say a planar para algebra P• is a *-algebra, if there is an anti-linear
involution ∗ : Pm,±,g →Pm,±,−g, for each m and g ∈ G; and ZT ∗(x

∗) = ZT (x)∗, for any x in
the tensor power of Pn,±, where the tangle T ∗ is the vertical reflection of the tangle T .

Definition 2.14. An anti-linear involution Θ on the unshaded planar para algebra P•
is called a horizontal reflection, if Θ : Pm,±,g → Pm,±,−g, for each even m and g ∈ G;
Θ : Pm,±,g →Pm,∓,−g, for each odd m and g ∈ G; and Θ(ZT (x)) = ZΘ(T )(Θ(x)), where the
tangle Θ(T ) is the horizontal reflection of the tangle T . In particular, the reflection Θ acts as
Θ(x⊗+ y) = Θ(y)⊗− Θ(x) and Θ(xy) = Θ(x)Θ(y).

Consider the example of the group G = ZN , and the bicharacter ω(j, k) = qjk, where

q = e
2πi
N . Choose ζ to be a square root of q such that ζN

2
= 1. Then

ζ =

{
−eπiN , if N is odd

±eπiN , if N is even
. (II.3)

In the odd case with one solution, also ζN = 1. In the even case one must choose one of the
two solutions throughout, and also ζN = −1.

Proposition 2.15. Let ζ be a square root of q = e
2πi
N , such that ζN

2
= 1. Then∣∣∣∣∣ 1√

N

N−1∑
j=0

ζj
2

∣∣∣∣∣ = 1 . (II.4)
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Proof. The Fourier transform F on ZN is

(Ff)(j) =
1√
N

N−1∑
i=0

qijf(i) , with inverse (F2f)(−i) = f(i) . (II.5)

Let ω = 1√
N

∑N−1
j=0 ζj

2
, so we wish to show |ω| = 1. Also let f(i) = ζ i

2
and g(j) = ζ−j

2
. Then

(Ff)(j) =
1√
N

N−1∑
i=0

qij ζ i
2

=
1√
N

N−1∑
i=0

ζ(i+j)2 ζ−j
2

= ω g(j) .

In the last equality, we use that ζN
2

= 1, so the sum of ζ(i+j)2 over i is independent of
j. Similarly (Fg)(i) = ωf(i). But using the Fourier inversion identity of (II.5), as well as
f(−i) = f(i) in our case, we infer |ω|2 = 1. �

Recall that the 2π rotation is not the identity on a (ZN , ω) planar para algebra. Also

recall that for ζ2N = ζN
2

= 1, the power ζ−|x|
2

is well-defined.

Definition 2.16. Define the reflection Θ = Θζ as an antilinear extension of the operator on
homogeneous elements x given by

Θ(x) = ζ−|x|
2

ρπ(x∗) . (II.6)

Proposition 2.17. On a (ZN , ω) planar para *-algebra, the map Θ defined in (II.6) is a
horizontal reflection.

Proof. The horizontal reflection is the composition of an anti-clockwise π rotation, a vertical
reflection and a complex conjugation. Suppose T (x) is a labelled tangle for a regular planar
tangle T and x = ⊗ixi. Assume that the ith label xi is graded by gi. Then the label Θ(xi)

in Θ(x) is graded by −gi, and Θ(xi) = ζ−g
2
i ρπ(xi). The para isotopy of each pair of labels

contributes a scalar q(−gi)(−gj). Therefore

ZΘ(T )(Θ(x)) =
∏
i

ζ−g
2
i ×

∏
i,i′

q−gigi′ρπ(ZT ∗(x
∗))

= ζ−|x|
2

ρπ(ZT (x)∗)

= Θ(ZT (x))

�

To introduce reflection positivity, the reflection Θ(x) should be the horizontal reflection of
x; it should be represented as a box beside x, namely on the same level, with also the $ signs
on the same horizontal level. But equal levels are not permitted in planar para algebras.

In order to avoid this difficulty, we introduce the twisted tensor product, which plays
the same role as the twisted product for parafermion algebras in [JP15b, JJ16b]. For any
homogenous x, we have |Θ(x)| = −|x|. By para isotopy,

Θ(x)⊗+ x = q−|x|
2

Θ(x)⊗− x.



10 ARTHUR JAFFE AND ZHENGWEI LIU

Definition 2.18 (Twisted tensor product). Let the twisted tensor product of Θ(x) and
x be

Θ(x)⊗t x := ζ |x|
2

Θ(x)⊗+ x = ζ−|x|
2

Θ(x)⊗− x , (II.7)

pictorially denoted by

( (
... ...
x x

... ...
. (II.8)

Proposition 2.19. For homogenous x and y in Sm,±, we have

(Θ(x)⊗t x)(Θ(y)⊗t y) = Θ(xy)⊗t xy.

Proof. It follows from the equality ζ |x|
2
ζ |y|

2
q|x||y| = ζ(|x|+|y|)2 . �

Proposition 2.20. For any homogenous m-box x, we have

F−m

 ( (
... ...
x x

... ...
 =

x

...
x

...

...

...

.

Proof. Note that Θ(x) ⊗t x = ρπ(x∗) ⊗+ x. Applying F−m, we obtain the equality by
isotopy. �

2.5. Subfactor planar para algebras. The m-box space of a planar para *-algebra has
an inner product tr(x∗y) for m-boxes x and y.

Definition 2.21. A subfactor planar para algebra P• will be a spherical planar para *-algebra
with dim Pm,± <∞ for all m, and such that the inner product is positive.

Remark 2.22. We call it a subfactor planar para algebra, because a subfactor planar para
algebra is the graded standard invariant of a G graded subfactor. The general theory will
be discussed in a coming paper. Motivated by the deep work of Popa [Pop90, Pop94], we
conjecture that strongly amenable graded hyperfinite subfactors of type II1 are classified by
subfactor planar para algebras.

When ω = 1, the subfactor planar para algebra P• is a (G graded) subfactor planar
algebra. The zero graded part of a subfactor planar para algebra is a subfactor planar algebra.

Many notions of subfactor planar algebras are inherited for subfactor planar para algebras,
such as the Jones projections, the basic construction, principal graphs, depths. We refer the
readers to [Jon83, Jon98] for the planar algebra case.

Definition 2.23. A subfactor planar para algebra P• is called irreducible, if dim P1,±,0 = 1.
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2.6. Examples. Skein theory is a presentation theory for planar algebras in terms of genera-
tors and (algebraic and topological) relations. One can study the skein theory for planar para
algebras in a similar way. We refer the reader to [Jon98] for the skein theory of planar algebras
(in Section 1) and many interesting examples (in Section 2). Also see [BMPS12, Liub] for
the skein-theoretic construction of the extended Haagerup planar algera and a new family of
planar algebras.

Let us construct a spherical unshaded planar para algebra with the para symmetry
(ZN , ω). We take the same bicharacter that we considered in §2.4, namely ω(j, k) = qjk,

where q = e
2πi
N and choose ζ to be a square root of q given in (II.3), such that ζN

2
= 1. This

planar para algebra plays the role of the Temperley-Lieb-Jones planar algebra among planar
para algebras with para symmetry (ZN , ω).

Let P• be the unshaded planar algebra over the field C(δ) generated by a 1-box c, graded
by 1, and satisfying the following relations:

(1) = ,

(2) = 0, for 1 ≤ k ≤ N − 1,

(3) = ζ , namely Fourier-parafermion relation,

where δ is the circle parameter and denotes a through string with k labels c.

c

c

c

c

c

Figure 2. A regular planar 6-tangle labelled by c
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Precisely, the vectors in Pm are linear sums of regular planar m-tangles labelled by c
modulo the relations. The para isotopy can also be viewed as relations:

= qij .

Regular planar tangles act on labelled regular planar tangles by gluing the diagrams.
The planar para algebra is called evaluable by the relations, if dim(P0) ≤ 1, i.e., any

regular labelled planar 0-tangles is reduced to the ground field; and dim(Pm) <∞.
The relations are called consistent, if dim(P0) = 1, i.e., different processes of evaluating

a regular labelled planar 0-tangle give the same value in the ground field. In this case, the
map from regular labelled planar 0-tangles to the ground field is called the partition function,
denoted by Z.

Theorem 2.24. The above relations of the generator c are consistent and the unshaded
planar para algebra P• is evaluable and spherical over the field C(δ).

Proof. See Appendix A. �

When δ is a real number, we introduce the vertical reflection on P• mapping c to
c−1(= cN−1). Note that the involution preserves the relations of c, thus it is well-defined on
the planar para algebra P•. So P• is a planar para *-algebra over C. We will prove that
the partition function Z is positive semi-definite with respect to * in Sections 3 and 8 and
construct subfactor planar para algebras by taking a proper quotient.

Note that the 1-box space of a (G,ω) planar para algebra forms a finite dimensional G
graded algebra with a G graded trace. (Here a G graded trace means that the trace of any
non-zero graded vector is zero.) On the other hand, given an Abelian group G, a bicharacter
ω of G, and any finite dimensional G graded algebra A with a G graded trace τ , we can
construct a shaded (G,ω) planar para algebra P(A) with the circle parameter δ over the

field C(δ). The generators of P(A) are 1-boxes x , for all x ∈ A. The relations are given

by

(1)
x

y

= xy ;

(2) x = τ(x) and x = τ(x),

for any x, y ∈ A.

Theorem 2.25. The above relations are consistent and the shaded (G,ω) planar para algebra
P(A) is evaluable and spherical over the field C(δ).
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Proof. The proof is similar to that of Theorem 2.24. �

In the case of parafermion planar para algebras, the ZN graded algebra A is given by the
N dimensional algebra generated by c and cN = 1. The G graded trace is given by τ(ck) = 0,
for 1 ≤ k ≤ N − 1, and tr(1) = 1.

3. Parafermion Planar Para Algebras

In this section, we take δ =
√
N and study the planar para algebra P• over the field

C. Recall that P• is a planar para *-algebra with the vertical reflection * defined as an
extension of c∗ = c−1.

The kernel of the partition function ker(Z) =
⋃
m,±{x ∈Pm,±|Z(tr(xy)) = 0, ∀y ∈Pm,±}

is an ideal of U (P ), in the sense that any fully labelled regular planar tangle with a label
in ker(Z) is in ker(Z). Thus action of regular planar tangles is well defined on the quotient
P/ ker(Z).

We prove that the following relation holds in P/ ker(Z):

=
1√
N

N−1∑
i=0

. (III.1)

Recall that the twisted tensor product is defined as

= ζ−i
2

= ζ i
2

.

By relation III.1, any fully labelled regular planar tangle is a linear sum of labelled regular
planar tangles with only labelled vertical strings. The algebra generated by labelled vertical
strings is a parafermion algebra, see Section 6.1 for the definition of parafermion algebras.
Therefore we call the planar para algebra P/ ker(Z) the parafermion planar para algebra,
denoted by PF•. We prove that PF• is a subfactor planar para algebra. We use this C∗

positivity condition to prove reflection positivity in Section 7. We give some interesting
properties of the parafermion planar para algebra in Section 4 and 6. Further applications in
quantum information of these topological isotopy and braided relations in Section 6.5 are
discussed in [JLW16a].

Notation 3.1. Take

vji =
1

δ
.

Then it is easy to check that vji v
l
k = δj,kv

l
i, and (vji )

∗ = vij. In particular, {vii} are pairwise
orthogonal idempotents.
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Lemma 3.2. The vector I2 −
∑

i∈ZN v
i
i is in the kernel of the partition function of P•.

Proof. The 2-box space has a generating set ,


0≤i,j≤N−1

.

Take x = id −
∑

i∈ZN v
i
i ∈ ker(Z). It is easy to check that tr(xy) = 0 for any 2-box y. By

the spherical property, we have that any 0-tangle labelled by x is isotopic to tr(xy) for some
2-box y. So x is in the kernel of the partition function. �

Thus we have the relation I2 =
∑

g∈G vg in the quotient (P/ kerZ)•, i.e.,

=
1√
N

N−1∑
i=0

(III.2)

Take the quantum Fourier transform F on both sides, i.e., the π
2

rotation. We obtain
Equation III.1.

Lemma 3.3. The vectors ci1 ⊗+ c
i2 · · · ⊗+ c

im , i.e.,

i

...

1

i2

im

, for 0 ≤ n1, n2 · · ·nm ≤ N − 1 ,

form an orthonormal basis of (P/ kerZ)m.

Proof. Any m-box is a linear sum of labelled Temperley-Lieb diagrams. Applying the relation
III.1, any labelled Temperley-Lieb diagram is a linear sum of the vectors cn1⊗+ c

n2 · · ·⊗+ c
nm ,

0 ≤ n1, n2 · · ·nm ≤ N − 1. Thus these vectors form a generating set of P/ kerZ•. It is easy
to check that these vectors form an orthonormal basis with respect to the Markov trace. �

Theorem 3.4. When δ =
√
N , the kernel of the partition function kerZ is generated by

id−
∑

i∈ZN v
i
i, and P/ kerZ is a subfactor planar para algebra.

Proof. The proof is a consequence of Lemmas 3.2 and 3.3. �

4. Parafermion Pauli Matrices

We define unitary N ×N matrices X, Y, Z that play the role in the parafermion algebra of
the 2× 2 Pauli matrices σx, σy, σz for fermions. We call the matrices X, Y, Z the parafermion
Pauli matrices. They act on an N -dimensional Hilbert space with basis vectors indexed by
ZN . In §4.1 we define these matrices and determine some of their properties.

In §4.2 we discuss the relation between the parafermion Pauli matrices and algebra. In
§4.3 we give two different ways to realize these matrices as quadratic functions of parafermion

matrices X̂, Ŷ , Ẑ, acting on a larger space. We call these Model I and Model II. Restricted
to a subspace, we obtain a representation of the matrices X, Y, Z. The first model is a
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generalization of the well-known representation for Pauli matrices by Majoranas, commonly
used in condensed-matter physics. The second model is different. In both cases the Pauli
matrices are products of parafermion particle operators with their anti-particle operators.

4.1. Parafermion Pauli matrices. Let us use Dirac notation for vectors, and take the
ortho-normal basis for an N -dimensional Hilbert space: { |k〉 | k ∈ Z}. Choose q = e

2πi
N and

its square root ζ such that ζN
2

= 1, as in (II.3). Define the Pauli matrices X, Y, Z by their
action on the basis,

X |k〉 = |k − 1〉 , Y |k〉 = ζ−2k−1 |k + 1〉 , and Z |k〉 = qk |k〉 . (IV.1)

Clearly X, Y, Z are unitary. In case N = 2, the choices

ζ = −i , |0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
, (IV.2)

yield the standard representation of the Pauli matrices; the choice ζ = i yields the complex
conjugate representation.

For any N ∈ N, these matrices satisfy a first set of parafermion Pauli matrix relations,

XN = Y N = ZN = 1 , Y X = q XY , ZY = q Y Z , and XZ = q ZX . (IV.3)

They also satisfy a second set of parafermion Pauli matrix relations that involve ζ,

XY Z = Y ZX = ZXY = ζ−1 . (IV.4)

4.2. Quaternion relations. Here we give the analog of the quaternion algebra, namely the
parafermion quaternion relations. Define the three unitary transformations i, j, k by

i = −ζ−1Y , j = −ζX , k = −ζZ . (IV.5)

Then we have the following relations for i, j, k, which we call the parafermion quaternion
relations :

iN = jN = kN = −1 , ij = q ji , jk = q kj , ki = q ik , and i j k = −1 . (IV.6)

The matrices i, j, k generate the algebra of N ×N matrices.

4.3. Representation quadratic in parafermions. Let c1, c2, c3, c4 denote four parafermion
operators that satisfy the relations

cicj = q cjci , for i < j , and cNi = 1 , where q = e
2πi
N . (IV.7)

Let ζ = q1/2 with ζN
2

= 1.
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4.3.1. Model I. For any N ∈ N define the matrices

X̂ = ζ c−1
1 c4 , Ŷ = ζ c2c

−1
4 , Ẑ = ζ c−1

3 c4 . (IV.8)

These matrices have the property that they satisfy the first set of parafermion Pauli relations
given in (IV.3) for X, Y, Z, namely

X̂N = Ŷ N = ẐN = 1 , Ŷ X̂ = q X̂Ŷ , ẐŶ = q Ŷ Ẑ , X̂Ẑ = q ẐX̂ . (IV.9)

However they do not identically satisfy the second set of parafermion Pauli relations (IV.4)

that involve the square root ζ. The product X̂Ŷ Ẑ has the form

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = ζ−1γ , where γ = qc−1
1 c2c

−1
3 c4 , (IV.10)

which indicates that γ commutes with X̂, Ŷ , and Ẑ. Thus one achieves the correct parafermion
Pauli matrix algebra representing (IV.4) on the subspace for which the unitary γ has eigenvalue
+1. In the N = 2 case, this is a well-known transformation in condensed matter physics.

4.3.2. Model II. This second model comes from taking

X̂ = ζ c−1
1 c2 , Ŷ = ζ c1c

−1
3 , Ẑ = ζ c−1

1 c4 . (IV.11)

These matrices also satisfy the first set of parafermion Pauli relations given in (IV.3) for
X, Y, Z, namely

X̂N = Ŷ N = ẐN = 1 , Ŷ X̂ = q X̂Ŷ , ẐŶ = q Ŷ Ẑ , X̂Ẑ = q ẐX̂ . (IV.12)

In this case one also finds that

X̂Ŷ Ẑ = Ŷ ẐX̂ = ẐX̂Ŷ = ζ−1γ , where γ = qc−1
1 c2c

−1
3 c4 . (IV.13)

So the relationship again reduces to the desired one on the +1 eigenspace of γ.

5. Pictorial Representations of Parafermion Pauli Matrices

Here we give three different diagrammatic representations for the matrices X, Y, Z and

of X̂, Ŷ , Ẑ defined in §4, as well as representations for the vectors in the underlining vector
space on which they act. The two-string model represents X, Y, Z as N ×N matrices. The

four-string models illustrate how to represent X̂, Ŷ , Ẑ as N2 ×N2 matrices. These matrices
leave invariant a subspace of dimension N , and on that subspace they represent the algebra of

the matrices X, Y, Z. The diagrams give a simple interpretation to the matrices X̂, Ŷ , Ẑ in the
four-string models, and show how they leave the appropriate subspace invariant. Throughout
this section take δ =

√
N .
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5.1. The two-string model. In this model, we deal with the X, Y, Z directly. We represent
the vector |k〉 by the cap diagram

|k〉 = N−
1
4

k . (V.1)

The vertical reflection gives the adjoint, or dual vector 〈k|, which we represent as the cup
diagram

〈k| = N−
1
4 -k , (V.2)

so that 〈k, k′〉 = 〈k |k′〉 = δkk′ .
The parafermion Pauli matrices X, Y and Z act on these vectors. We represent them as

X = -1 , Y = 1 , Z = -11 . (V.3)

From the diagrams it is clear that

XY Z = ζ−1 . (V.4)

Let us define Xm, Ym, Zm to be the diagrams with X, Y , Z on the (2m− 1)th and 2mth

strings respectively. Take

X̃m = Z−1
1 Z−1

2 · · ·Z−1
m−1Xm , (V.5)

Ỹm = Z1Z2 · · ·Zm−1Ym , (V.6)

Z̃m = Zm . (V.7)

They are presented pictorially as 2m-boxes:

X̃m = 1-1 1 -1
...

1-1 -1 , (V.8)

Ỹm = 1-11 -1
...

1 -1 1 , (V.9)

Z̃m = ...
1-1 . (V.10)

Then X̃m, Ỹm, Z̃m satisfy the same relation as Pauli matrices X, Y and Z. Moreover, they
commute for different m. This gives a representation of the parafermion algebras with 2m
generators by the mth tensor power of the N ×N matrix algebra generated by Pauli matrices.
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5.2. The Type I four-string model. This model corresponds to the parafermion repre-

sentation of X̂, Ŷ and Ẑ given in Model I of §4.3.
Basically the vectors |k〉 belong to the zero-graded part of the tensor product of two

copies of the two-string model. We represent the vector |k〉 and its adjoint by

|k〉 = N−
1
2

-kk , and 〈k| = N−
1
2 -k k . (V.11)

These vectors map to the corresponding vectors in the two-string model of §5.1. More
generally one could denote vectors |k, k′〉 given by the tensor product of caps |k〉 and |k′〉,
but we draw the diagrams for vectors in the zero-graded subspace; for these vectors k′ = −k.

We represent the parafermion Pauli matrices X̂, Ŷ and Ẑ of Model I by

X̂ = 1-1 , Ŷ = 1 -1 , Ẑ = 1-1 . (V.12)

Also

γ = ζX̂Ŷ Ẑ = 1-11-1 .

5.2.1. The grading operator. We call γ the grading operator, since

1-1 1 -1

i
j

= q−i−j
i

j

.

Hence γ has eigenvalue 1 on the zero-graded subspace on which the matrices X̂, Ŷ , and Ẑ

satisfy the correct algebraic relations. The diagrams show that X̂, Ŷ , and Ẑ preserve the
grading and that they commute with γ.

5.2.2. The braiding operators. Introduce the unitary braids b1 and b2 defined as

b1 |k〉 = ζ−k
2 |k〉 ; (V.13)

b2 |k〉 =
1√
N

N−1∑
j=0

ζj
2 |j + k〉 . (V.14)

One represents the braids b1 and b2 pictorially (up to a phase) as

b1 = , b2 = , (V.15)

while their adjoints are represented as

b∗1 = , b∗2 = . (V.16)
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Diagrammatically, one sees that

b2 X̂ b∗2 = X̂ , b1 Ẑ b
∗
1 = Ẑ . (V.17)

One can derive the relations

b1 X̂ b∗1 = Ŷ −1 , b1 Ŷ b
∗
1 = X̂−1 , b2 Ŷ b

∗
2 = Ẑ−1 , b2 Ẑ b

∗
2 = Ŷ −1 , (V.18)

using the braiding relations that we will give in §6.5. We omit this calculation.

5.3. The Type II four-string model. This model corresponds to the parafermion repre-

sentation of X̂, Ŷ and Ẑ given in Model II of §4.3. We represent the vector |k〉 and its dual
〈k| by

|k〉 = N−
1
2

k -k

, and 〈k| = N−
1
2

k-k

. (V.19)

The Pauli matrices X, Y and Z are presented by

X̂ = 1-1 , Ŷ = 1 -1 , Ẑ = 1-1 . (V.20)

The grading operator γ is represented by

γ = 1-11-1 . (V.21)

In this case, the matrices b1 and b2 defined in Equations (V.13) and (V.14) are presented
pictorially (up to a phase) as

b1 = , b2 = . (V.22)

One can also derive braiding relations in the Type II model for the parafermion Pauli matrices,
such as (V.17)–(V.18) in the Type I model, by using the braiding relations in §6.5.

6. A Pictorial Interpretation of Parafermion Algebras

6.1. Parafermion algebras. The parafermion algebra is defined by generators: ci, i =
1, 2, · · · and relations,

cNi = 1 , ci cj = q cj ci , for i < j , with q = e
2πi
N . (VI.1)

Denote the parafermion algebra generated by ci, 1 ≤ i ≤ m as PFm. It has a basis
CI = ci11 c

i2
2 · · · cimm , for 0 ≤ i1, i2, · · · , im ≤ N − 1. The expectation on PFm is defined as

tr(1) = 1, tr(CI) = 0, if CI 6= 1. It is a tracial state. The inclusion from PFm to PFm+1 is
trace preserving.
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Remark 6.1. If we apply the Gelfand-Naimark-Segal construction to the inductive limit
lim
m→∞

PFm with respect to the tracial state, then we obtain a hyperfinite factor R of type II1.

The Bernoulli shift ci → ci+1 is an endomorphism ρ of the factor R. The graded standard
invariant of the corresponding subfactor R ⊃ ρ(R) is exactly the subfactor planar para

algebra for parafermions with δ =
√
N .

6.2. Actions of planar tangles on parafermion algebras. In planar para algebras, the

labelled regular planar m-tangle
i

...

1

i2

im

is presented by the vector ci11 c
i2
2 · · · cimm in PFm.

The Markov trace 1
δm

is the expectation on PFm.

The multiplication tangle gives the usual multiplication on PFm: xy =

...

...
x

y
... .

The tangle 1
δ

$

...

...

is the trace preserving inclusion from PFm to PFm+1.

The tangle 1
δ

$

...

...
is the trace preserving conditional expectation from PFm to PFm−1.

We also have the graded tensor products from PFm⊗̂PFn to PFm+n given by

.

6.3. Temperley-Lieb subalgebras. Take

Ei =
1√
N

N−1∑
k=0

q
k2

2 cki c
−k
i+1 =

1√
N

N−1∑
k=0

q−
k2

2 c−ki+1 c
k
i .

From Equation (III.1), we infer that Ei is presented by
i i+1

... ... . The Ei satisfy the following

relations and generate a Temperley-Lieb subalgebra in the parafermion algebra:

(1) Ei = E∗i = 1√
N
E2
i .

(2) EiEj = Ej Ei, for |i− j| ≥ 2.
(3) EiEi±1Ei = Ei.
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One can check the following joint relations for Ei and ci algebraically,

Ei c
k
i = q−

k2

2 Ei c
k
i+1 ,

ckiEi = q
12

2 cki+1Ei .

They can also be derived from the relation = ζk
2

.

6.4. Quantum Fourier transform. The quantum Fourier transform is an important in-
gredient in subfactor planar (para) algebras. Since the parafermion algebra forms a subfactor
planar para algebra. we can introduce the quantum Fourier transform on parafermion algebras.
Its algebraic definition is complicated, but its topological definition is simply a rotation. The
quantum Fourier transform F is given by the action of the following tangle,

$

...

...
.

Algebraically the quantum Fourier transform on PFm is defined as follows: we first
embed PFm in PFm+1 by mapping ci to ci+1. The inclusion is denoted by ιl. Let Φr be
the trace preserving conditional expectation from PFm+1 to the subalgebra PFm generated
by c1, c2, · · · , cm. Then the quantum Fourier transform of x ∈ PFm is defined as F(x) =√
NΦr(EmEm−1 · · ·E1ιl(x)).

In particular, the zero graded part of the 2-box space has a basis

i∈ZN

.

Moreover, the basis forms the group ZN :

= .

Proposition 6.2. The restriction of the quantum Fourier transform on the zero graded part
of 2-box space is the discrete Fourier transform on the group ZN :

F

  =
1√
N

N−1∑
j=0

qij . (VI.2)
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Proof. Diagrammatically,

F

  = , by Proposition 2.20,

=
1√
N

N−1∑
j=0

, by Equation III.1,

=
1√
N

N−1∑
j=0

qij , by para isotopy.

�

Note that the 2-box space forms an N by N matrix algebra. Thus we can extend the
Fourier transform on the group ZN to the quantum Fourier transform on N ×N matrices.

6.5. Braided relations. In this section, we construct braids for parafermion algebras which
behave well in a diagrammatical way, so that the strings can act over the parafermion planar
para algebra PF• in the 3-dimensional space.

Take ω = 1√
N

∑N−1
i=0 ζ i

2
, so |ω| = 1 by Proposition 2.15. Let ω

1
2 be a square root of ω.

Let us construct the braids as

=
ω

1
2

√
N

N−1∑
i=0

(VI.3)

=
ω

1
2

√
N

N−1∑
i=0

ζ−i
2

, (VI.4)

=
ω−

1
2

√
N

N−1∑
i=0

(VI.5)

=
ω

1
2

√
N

N−1∑
i=0

ζ i
2

. (VI.6)

Since ζ i
2

= ζ(−i)2 , the two braids behave well under the vertical reflection ∗ and also under
the horizontal reflection Θ: ∗ = , Θ

  = . (VI.7)
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Proposition 6.3. With the above notion of ω
1
2 , the two braids behave well under π

2
rotation:

F

  = , F

  = . (VI.8)

Proof. The computation has been done in the proof of Proposition 2.15 �

Recall that F

  = . Thus

=
ω−

1
2

√
N

N−1∑
i=0

ζ i
2

, (VI.9)

=
ω

1
2

√
N

N−1∑
i=0

ζ−i
2

. (VI.10)

Therefore the braids are unitary and we have the Reidemeister move of type II:

= . (VI.11)

Moreover, we have the following Reidemeister moves of type I:

= ω
1
2 , = ω−

1
2 .

The Reidemeister move of type III is also known as the Yang-Baxter equation:

= .

This is a consequence of:

Theorem 6.4 (Braid-Parafermion Relation). We have the relation:

1

=
1

. (VI.12)

Proof. By Equation VI.5,

1

=
ω

1
2

√
N

N−1∑
i=0

i

-i+1
=

ω
1
2

√
N

N−1∑
i=0

i+1

-i
=

1

.



24 ARTHUR JAFFE AND ZHENGWEI LIU

Here we translate the sum in ZN . �

The braid-parafermion relation VI.12 says that the generator c can move under the string.
Combining this with the Reidemeister move of type II in (VI.11), any m-box x can move
under the string:

...

x

...

... = ...

x

...

...

. (VI.13)

Therefore the strings can be lifted to the three dimensional space acting over the planar para
algebra. We call this property of the parafermion planar para algebra PF• the half-braided
property.

Definition 6.5. An unshaded planar (para) algebra is called half braided, if there are (zero-

graded) 2-boxes and , such that Equations (VI.8), (VI.11) hold, and for any

m-box x Equation (VI.13) holds.

Remark 6.6. The zero graded part of the parafermion planar para algebra PF• is the group

ZN subfactor planar algebra P ZN . It is generated by 2-boxes



i∈ZN

which form

the group ZN . The bosonic generator is decomposed as the twisted tensor product

of the parafermion ci and its antiparticle Θ(ci). We interpret the decomposition as the
parasymmetry of the parafermion planar para algebra PF•. The proof the Yang-Baxter
equation takes advantage of the parasymmetry.

Theorem 6.7. The string moves under the zero-graded planar subalgebra P ZN of PF• as a
Z2 flip:

1
-1

=
1

-1

.

Proof. By Equation VI.6,

1
-1

=
ω−1

N

N−1∑
i,j=0

i

-j
j-i

1
-1

=
ω−1

N

N−1∑
i,j=0

qj−i
i+1

-j

j-i-1 .
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1
-1

=
ω−1

N

N−1∑
i,j=0

i

-j
j-i

1
-1

=
ω−1

N

N−1∑
i,j=0

qj−i
i

-j+1

j-i-1 .

Substitute i, j by i+ 1, j + 1 in the above equation. Then we have that

1
-1

=
1

-1

.

�

Corollary 6.8. Any element x in P ZN can move above double strings.

x

...
...

...

=
x

...
...

...

.

Therefore the even, zero-graded part of PF• can move both above and under double
strings, and we recover a well-known modular tensor category. The simple objects are given by

projections



i∈ZN

. The morphisms are given by zero-graded elements of PF•. The

braids are derived from . The multiplication and the tensor product are given by the action

of corresponding tangles in Section 2.2. Moreover, PF• turns out to be a module category
over the modular tensor category. We refer the readers to [LR95, Xu98, BE98, Ocn00, Ost03]
on the general theory of module categories over modular tensor categories.

6.6. Matrix units. With the help of the pictures, we construct matrix units of para fermion
algebras. The matrix units of PF2m are given by

N−
m
2

i1

...imi2

i1 ...
im

i2

'
'

'

,

for 0 ≤ i1, i
′
1, i2, i

′
2, · · · , im, i′m ≤ N − 1. Note that PF1 is the group algebra for ZN . The N

minimal projections of PF1 are given by Qi =
1

N

N−1∑
j=0

qijcj1, for 0 ≤ i ≤ N − 1.
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The matrix units of PF2m+1 are given by

N−
m
2

i1

...imi2

i1 ...
im

i2

'
'

'

Qi ,

for 0 ≤ i, i1, i
′
1, i2, i

′
2, · · · , im, i′m ≤ N − 1. If we apply the relation III.1, then the matrix units

can be expressed in terms of the usual basis
i

...

1

i2

im

of the parafermion algebra PFm.

7. Reflection positivity

In this section, we will apply the quantum Fourier transform on subfactor planar para
algebras to prove the reflection positivity.

7.1. General case. Suppose S is a (ZN , ω) subfactor planar para *-algebra, where ω(i, j) =

qij, q = e
2πi
N . Recall that ζ is a square root of q and ζN

2
= 1. Then ζ |x|

2
is well-defined for

any homogenous x. By Proposition 2.17, the map Θ(x) = ζ−|x|
2
ρπ(x∗) extends anti-linearly

to a horizontal reflection on a subfactor planar para algebra.
In Proposition 2.20, we proved that

F−m

 ( (
... ...
x x

... ...
 =

x

...
x

...

...

...

,

for any homogenous m-box x. Note that the lower half of

x

...
x

...

...

...

is the adjoint of the upper

half. Thus

x

...
x

...

...

...

≥ 0

as an operator in the C∗ algebra S2m,±. Reflection positivity is related to the C∗ positivity

by the quantum Fourier transform F−m, the anti-clockwise
π

2
rotation.
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Theorem 7.1 (Reflection Positivity: General Case). Consider a subfactor planar para
algebra S , and a Hamiltonian H ∈ S2m,±,0. Let F−m(−H) be a positive operator in S2m,±.
Then H has reflection positivity on Sm,±, for all β ≥ 0. That is

tr(e−βH(Θ(x)⊗t x)) ≥ 0,

for any homogenous x ∈ Sm,±.

Proof. If F−m(−H) is positive, then we take its square root T = T ∗ = (F−m(−H))
1
2 . For any

homogenous x ∈ Sm,±, Θ(x) ⊗t x is zero graded. Applying anti-clockwise
π

2
rotation, we

have

=

...

...

... ...

... ...

...F (-H)
-m

x

...
x

... ...

...

...

...

F (-H)
-m

=

...

...

... ...

... ...
...

x

...

...

...

...

... ...

... ......

x

...

...
T T

T T ≥ 0. (VII.1)

The last inequality holds, since the lower half is adjoint of the upper half. Algebraically, for
any k ≥ 0,

δ2mtr((−H)kΘ(x)⊗t x) ≥ 0.

For any β > 0, we have that

tr(e−βH(Θ(x)⊗t x)) =
∞∑
k=0

βktr((−H)kΘ(x)⊗t x) ≥ 0

and H has reflection positivity. �

Remark 7.2. The quantum Fourier transform as the anti-clockwise π
2

rotation changes the
trace to vacuum state, the multiplication to the convolution. The positivity of the convolution
positive operators is known as the Schur product theorem, proved in [Liua] for subfactor planar
algebras. For the parafermion algebra case, the Schur product of F−m(−H) corresponds to
the Hadamard product of the coupling constant matrix of H.

7.2. Quantized vectors. The homogenous condition for x in Theorem 7.1 is not necessary.
Let us extend the twisted tensor product for any Θ(x) and y.

Definition 7.3. Suppose x =
N−1∑
i=0

xi and y =
N−1∑
i=0

yi, and xi, yi are graded by i. We define

the twisted tensor product

Θ(x)⊗t y =
N−1∑
i,j=0

ζ ijΘ(xi)⊗+ yj.
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We use to denote Θ(x)⊗t y.

Proposition 7.4. For x, y in Sm,±, we have

Θ(Θ(x)⊗t y) = Θ(y)⊗t x , and (Θ(x)⊗t y)∗ = Θ(x∗)⊗t y∗.
Proof. Since Θ is a horizontal reflection, we have that

Θ(Θ(x)⊗t y) = Θ(ζ |x|+|y|+Θ(x)⊗+ y)

= ζ−|x|+|y|+Θ(y)⊗− x
= Θ(y)⊗t x.

Since ∗ is a vertical reflection, we have that

(Θ(x)⊗t y)∗ = (ζ |x|+|y|+Θ(x)⊗t y)∗

= ζ−|x|+|y|+Θ(x∗)⊗− y∗

= Θ(x∗)⊗t y∗ .
�

For a Hamiltonian H ∈ S2m,± , we define an inner product

< x, y >Θ= tr(e−βH(Θ(x)⊗t y)),

for x, y ∈ Sm,±. If H has reflection positivity, then Sm,± forms a Hilbert space with respect
to the inner product < ·, · >Θ, called the quantized space. The image of x in the quantized
space is denoted by x̂. We give a presentation of the quantized vector x̂ in the subfactor
planar para algebra S .

Theorem 7.5. Suppose F−m(−H) is positive, and T is its square root. We construct the
quantized vector

x̂ := ⊕∞k=0

β
k
2

δk
...

...

... ...

... ...
...

x

...

...
T T

.

(There are k copies of T in the diagram.) Then

〈x, x〉Θ = x̂∗x̂ ≥ 0.

Proof. Suppose x =
N−1∑
i=0

xi and xi is graded by i. Then 〈xi, xi〉Θ = x̂i
∗x̂i by Equation VII.1.

Since 〈xi, xj〉Θ and x̂i
∗x̂j are graded by j − i, we infer that they are zero if i 6= j. Therefore

< x, x >Θ=
N−1∑
i=0

< xi, xi >=
N−1∑
i=0

x̂i
∗x̂i = x̂∗x̂ ≥ 0.
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�

7.3. Parafermion algebras. Recall that the basis of PFm is given by ci11 c
i2
2 · · · cimm , 0 ≤

i1, i2 · · · im ≤ N − 1.
Let A+ be the sub algebra of PF2m that consists of Im ⊗ x, for x ∈ PFm. Let A− be the

sub algebra of PF2m that consists of y ⊗ Im, for y ∈ PFm. Then the graded tensor product
A = A−⊗̂A+ is PF2m.

Note that Θ(c) = ζF−1(c∗) = c−1. The reflection Θ from A± ∼= PFm to A∓ ∼= PFm is
the anti-linear extension of Θ(ci1 ⊗+ c

i2 · · · ⊗+ c
im) = c−im ⊗− · · · ⊗− c−i2 ⊗− c−i1 . Therefore

A = θ(A+)⊗̂A+. We call the graded tensor product A the double algebra of A+.
Take the Hamiltonian H in PFm. In terms of the basis CI , we have

−H =
∑
I,I′

J I
′

I Θ(CI)⊗t CI′

for some coupling constants J I
′
I . The HamiltonianH is called reflection invariant, if Θ(H) = H,

or equivalently J I
′
I = J II′ for all I, I ′, or equivalently J is a Hermitian matrix.

Let J0 be the sub matrix of J , whose coordinates I and I ′ are both non-empty, i.e.,
the matrix of coupling constants crossing the reflection plane. The following theorem is
formulated and proved in [JJ16b] by a different method. Here we give a diagrammatic
interpretation that gives special insight and understanding.

Theorem 7.6 (Reflection Positivity for Parafermions). Suppose the Hamiltonian H
is reflection invariant and |H|+ = 0. Then H has reflection positivity, i.e.,

tr(e−βH(Θ(x)⊗t x)) ≥ 0,

for any x ∈ PFm, for all β ≥ 0, if and only if J0 ≥ 0.

Proof. Take

vI
′

I = N−
m
2

CI'

CI

... ...

... ...

.

Then vI
′
I are matrix units acting on the Hilbert space V = { y

... ... |y ∈ PFm}. By

Proposition 2.20,

F−m(−H) = N
m
2

∑
I,I′

J I
′

I v
I′

I . (VII.2)

Note that e−β(H+rI2m) = e−βre−βH , so the scalar r will not affect the reflection positivity
condition of H. Without loss of generality, we assume that J∅∅ = 0.
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When J0 ≥ 0, for any s > 0, take

−H(s) = −H + s
∑
I,I′ 6=∅

J∅I J
I′

∅ Θ(CI)⊗t CI′) + s−1I2m .

Since J is Hermitian, we have

F−m(−H(s)) = N
m
2

∑
I 6=∅,I′ 6=∅

J I
′

I v
I′

I +N
m
2 s−1(v∅∅ + s

∑
I 6=∅

J∅I v
∅
I )(v

∅
∅ + s

∑
I 6=∅

J∅I v
∅
I )
∗

≥ 0

By Theorem 7.5, H(s) has reflection positivity,

tr(e−βH(s)(Θ(x)⊗t x)) ≥ 0,

so does H(s)− s−1I2m. Take s→ 0. This shows that H has reflection positivity,

tr(e−βH(Θ(x)⊗t x)) ≥ 0 .

On the other hand, if H has reflection positivity for all β ≥ 0, then for any homogenous
x in PFm orthogonal to Im, we have

tr(e−βH(Θ(x)⊗t x)) ≥ 0 ,

and the equality holds when β = 0. Take the first derivative with respect to β. Then we have

tr(−H(Θ(x)⊗t x)) ≥ 0 . (VII.3)

Apply the anti-clockwise π
2

rotation to Equation VII.3, and use Equation VII.2. This shows
that we have

∑
I,I′

J I′I

x

CI'

x

CI
... ...

... ...

≥ 0 ,

for any m-box x orthogonal to Im. Therefore the matrix J0 as the restriction of J on the

subspace V \ C{ ... ...}
m

} is positive. �
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8. Positivity for the General Circle Parameter

We constructed the planar para algebra P• over the field C(δ) in Section 2.6. The m-box
space has a sub algebra generated by labelled tangles with only vertical strings which is
isomorphic to the parafermion algebra PFm.

Similar to the Temperley-Lieb-Jones planar algebra case, we can construct matrix units of
Pm over the field C(δ) inductively by the matrix units of parafermion algebras constructed
in Section 6, the basic construction and the general Wenzl’s formula [Wen87, Liub]. If a
labelled tangle is not in the basic construction ideal, then it is in the parafermion algebra.
Therefore, the principal graph of the planar para algebra P• is the same as the Bratteli
diagram of parafermion algebras, i.e.,

...... ... ,

assuming the quantum dimensions of vertices in the principal graph are non-zero. This
assumption can be avoided by the bi-induction argument in [Liub]. Moreover, we obtain
the formula of the quantum dimensions of these vertices. There is one depth 2m vertex.
Its quantum dimension is

√
N [2m]. There are N depth 2m + 1 vertices. Any of them has

quantum dimension
√
N
N

[2m+ 1]. Here [m] is the quantum number qm−q−m
q−q−1 , and δ =

√
N [2].

Jones’ remarkable rigidity theorem [Jon83] says that all possible values of the circle
parameter of a subfactor planar algebra are given by

{2 cos
π

n
|n = 3, 4, · · · } ∪ [2,∞).

These values are realized by Temperley-Lieb-Jones subfactor planar algebras.
To obtain the positivity for the planar para algebra P•, δ has to be positive. In this case,

we can define the (unique) vertical reflection ∗ on the planar algebra induced by c∗ = c−1.

Theorem 8.1. The planar para algebra P• has positivity if and only if δ√
N

is in

{2 cos
π

k
|k = 3, 4, · · · } ∪ [2,∞).

Proof. The matrix units of Pm are constructed over the field C(δ). When δ is a scalar, the
matrix units of Pm are well-defined by Wenzl’s formula, if the Markov trace is non-degenerated
on Pm−1.

If 2 cos π
k−1

< δ < 2 cos π
k
, then [i] > 0 for all i < k. Thus the matrix units of Pk are still

well-defined. Since [k] < 0, the positivity fails.
If δ = 2 cos π

k
, then [i] > 0 for all i < k. Thus the matrix units of Pk are still well-defined.

Since [k] = 0, any minimal idempotent orthogonal to the basic construction ideal has trace
0. Thus it is in the kernel of the partition function. Therefore, P• modulo the kernel of
the partition function is a depth k − 1 subfactor planar para algebra. It has the following
principal graph for k = 3, 4, 5, · · ·
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... ; ... ; ... ... ; · · ·

If δ ≥ 2, then [i] > 0 for all i. Thus the matrix units of P• are still well-defined. Moreover,
P• is a subfactor planar para algebra with the following principal graph

...... ... .

�
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Appendix A. The Construction of Planar Para Algebras for Parafermions

Since the generators are 1-boxes, any labelled 0-tangle is a disjoint union of closed strings
labelled by generators. For an innermost closed string, we can move all its labels toward on
point by isotopy. Then we can reduce the labelled closed string to a scalar by the relations
given by the multiplication and the trace. Note that only the zero graded part on the closed
string is evaluated as a non-zero scalar, since the trace is graded. The para isotopy and the
2π rotation reduce to the usual isotopy of planar algebras on zero-graded part. Thus the
evaluation of different labeled closed strings are independent modulo para isotopy. Essentially
we only need the consistency condition on a single labelled closed string which indicates the
associativity of the multiplication and the tracial condition of the expectation.

The above argument can be formalized by the method in Section 5 in [Liub] which was
motivated by the work of Kauffman [Kau90]. The idea is first constructing the planar algebras
generated by the generators without relations, namely the universal planar algebra. Then
one can define a partition function on the universal planar para algebra as the average of
complexity reducing evaluations and prove that the relations are in the kernel of the partition
function.

Proof of Theorem 2.6. For the group ZN and a bicharacter ω(i, j) = qij , q = e
2πi
N , first let us

construct a shaded (ZN , ω) planar para algebra generated by the 1-box c with grading 1 and

relations cN = 1, = 0, for 1 ≤ k ≤ N − 1. The para isotopy and the 2π rotation for

the generator c can also be viewed as relations of c.
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Let U be the (ZN , ω) universal planar para algebra generated by c. Let us define the
partition function Z inductively by the number of labelled circles of labelled 0-tangles as
follows.

The partition function of the empty diagram is 1. We assume that the partition function
for diagrams with at most n−1 labelled circles is defined. Let us define the partition function
of a labelled 0-tangle T with n labelled circles. Let IC be the set of innermost (labelled)
circles of T . Take one circle L in IC, let us define Z(T, L).

If L has no label c, then Z(T, L) := δZ(T \L). If the number of labels of L is not divisible
by N , then Z(T, L) := 0. If L has Nk labels, we count the labels in L anti-clockwise starting
from the top label c, denoted by ci, 0 ≤ i ≤ Nk − 1. Let us move ci clockwise to c0 one by
one by RT isotopy and para isotopy. While applying the para isotopy to ci and another label,
we obtain a scalar q or q−1 each time. While moving ci to c0, if ci is rotated clockwise by
2kiπ, then we obtain a scalar qki . Let qL be the multiplication of all these scalars. Then
Z(T, L) := qLδZ(T \ L).

Let us define

Z(T ) =
1

|IC|
∑
L∈IC

Z(T, L).

By an inductive argument and the fact that qN = 1, it is easy to check that Z(T ) is well-
defined on the universal planar para algebra. The most complex case is to show the Z(T, L)
is well-defined while applying the para isotopy to c0 and c1. Under this isotopy, the top label
becomes c1. In this case, we need to move c0 clockwise along L. We obtain Nk − 1 scalars q
from the para isotopy, and one scalar q from the 2π rotation of c0. Their multiplication is 1.
So Z(T, L) does not change.

Moreover, it is easy to check that all the relations are in the kernal of the partition
function Z. Therefore the relations are consistent. The identity is the only 0 graded 1-box,
so P/I is a spherical planar para algebra.

Take ζ to be a square root of q such that ζN
2

= 1. Note that ζF(c) satisfies the relations

as c. Therefore, we can lift the shading of P/I and by introducing the relation F(c) = q
1
2 c.

Then P/I is an unshaded planar algebra. �
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