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Abstract: We study the elliptic genus (a partition function) in certain interacting, twist
quantum field theories. Without twists, these theories haveN = 2 supersymmetry. The
twists provide a regularization, and also partially break the supersymmetry. In spite of the
regularization, one can establish a homotopy of the elliptic genus in a coupling param-
eter. Our construction relies ona priori estimates and other methods from constructive
quantum field theory; this mathematical underpinning allows us to justify evaluating the
elliptic genus at one endpoint of the homotopy. We obtain a version of Witten’s proposed
formula for the elliptic genus in terms of classical theta functions. As a consequence,
the elliptic genus has a hiddenSL(2,Z) symmetry characteristic of conformal theory,
even though the underlying theory is not conformal.

1. Introduction

We study coupled complex bosonic and fermionic quantum fields on a two-dimensional
space-time cylinderS1 × R, whereS1 denotes a circle of length�. The equations are
determined by a holomorphic polynomial inn variables called the superpotential,

V :Cn �→ C. (1.1)

We denote the degree of this polynomial by

ñ = degree(V ), and we assumẽn ≥ 2. (1.2)

The complex scalar fieldsϕ and the Dirac fieldψ havenand 2n components respectively,

ϕ = {ϕi}, where 1≤ i ≤ n, and ψ = {ψα,i}, where 1≤ α ≤ 2, 1 ≤ i ≤ n.
(1.3)

� Work supported in part by the Department of Energy under Grant DE-FG02-94ER-25228. The author
performed this research in part for the Clay Mathematics Institute.
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In the literature one finds these equations called “Wess–Zumino equations” or sometimes
“Landau–Ginzburg equations”. For cubicV , the equations reduce to the coupling of a
non-linear boson field to the Dirac field by aYukawa interaction. Hence one occasionally
also refers to the equations arising from generalV as “generalized Yukawa” equations.
In [15,12] we established the existence of solutions to the Wess–Zumino equations for
massive fields. Recently we extended these results by proving the existence of solutions
for the equations couplingmassless, multicomponent, twist fields.The word “twist” refers
to the fact that the fields are multi-valued; translation about the spatial circle results in
each component of the field being multiplied by a phase. This phase is proportional to
a real parameterφ that we choose in the intervalφ ∈ (0,2π ], and the periodic case (no
twist) corresponds to the limiting valueφ = 0. The operators in the field theory act on a
Fock–Hilbert spaceH over the circle, with domains and other properties of the operators
depending onφ. For details of these definitions and results see [4,10,11].

We study a subset of polynomialsV with properties detailed in Sect. 1.1. For these
examples, the HamiltonianH = H(V ) is self-adjoint, it is bounded from below, and
the heat kernele−βH has a trace for allβ > 0. This semigroup commutes with the
translation group generated by the momentum operatorP . There is also aU(1) group
U(θ) = eiθJ of “twist” symmetries ofH , where the generatorJ = J (V ) depends onV ,
see Sect. 1.1. Denote the fermion number operator byNf , and let� = (−I )Nf denote
a Z2-grading. In our examples, all four operatorsH , P , J , and� are self-adjoint and
mutually commute. Hence the operatorA = � e−iθJ−iσP is unitary, and the operator
Ae−βH = � e−iθJ−iσP−βH has a trace for allβ > 0.

The elliptic genus is the partition function

ZV = TrH
(
�e−iθJ−iσP−βH

)
. (1.4)

In a seminal paper [21], Witten suggested that one could calculate the elliptic genus of
these examples in closed form. He gave a proposed formula (forφ = 0) based on an
argument thatZλV should be independent of a parameterλ, and an “evaluation” ofZ for
V = 0. Kawai,Yamada, andYang [17] elaborated on the algebraic aspects Witten’s work
and made contact with related proposals ofVafa [19]. From a mathematical point of view,
these insights are not definitive; the representation (1.4) is ill-defined if bothV = 0 and
φ = 0, ase−βH does not have a trace, and the evaluation is only suggestive. Furthermore,
establishing the existence and continuity ofZλV requires extensive analysis, beyond the
scope of earlier work.

We introduce a regularizedZV , with two regularizing parameters. The first regular-
ization mollifies the zero-frequency modes, and enters through the non-zero twisting
parameterφ, as explained in Sect. 1.1. The second regularization mollifies the high-
frequency modes. We denote the regularization parameter by , and we discuss it in
detail in Sect. 5 when we give an explicit expression for the supercharge as a densely
defined sesqui-linear form on the Hilbert spaceH. The regularized supercharges deter-
mine self- adjoint operators. The elliptic genus depends on the parameterφ, and has a
regular limit asφ → 0. (In fact, the genus continues holomorphically to allφ ∈ C.) The
genus does not depend on the high-frequency mollifier .

Our goal in this paper is to find and exploit infra-red and ultra- violet regularizations
that yield all the following:

• a self-adjoint HamiltonianH that is bounded from below, with a trace class heat
kernel,

• the two-parameter group of Lie symmetries ofH generated byJ andP , and
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• a sufficient number of invariant supercharges to study and to compute the elliptic
genus.

The method that we use in this paper has many advantages. We use twists to provide
the infra-red regularization, and a ultra-violet regularization with the property ofslow
decrease at infinity to provide a non-local cutoff in the Hamiltonian. This regularized
Hamiltonian has a form that allows us to establish stability and self-adjointness, as
well as the existence of a trace for the heat kernel. This trace is uniform in the ultra-
violet regularization parameter , but diverges as the twist parameterφ → 0. This
regularization leaves us with half the number of translation- invariant supercharges that
one expects in a twist-free theory. These supercharges also commute withJ .

On the other hand, more straightforward regularizations cause difficulty in at least one
of these areas, either producing a heat kernel with continuous spectrum, destroying the
eiθJ symmetry that one needs to study the elliptic genus, breaking all supersymmetries,
making it impractical to establish stability, or producing error terms in the supersym-
metry algebra that elude estimation. For example, introducing a bosonic mass, without
a corresponding fermionic mass, provides an infra-red regularization compatible with a
trace-class heat kernel and withJ -symmetry; but all supersymmetries will be broken.We
used this method in [9] to study the quantum-mechanics version of the present problem.
As a result, the mathematical analysis became quite lengthy – even in the case of a finite
number of degrees of freedom. On the other hand, introducing a mass in both the boson
and the fermion destroys theJ -symmetry of the Hamiltonian, as well as of all super-
charges, requiring the analysis of o ther types of error estimates. Furthermore, a sharp
upper momentum cutoff in the interaction produces non-localities that defy estimation.

One new ingredient in our program is to generalize the framework of constructive
quantum field theory to cover twist fields. We carry this out in more detail in [10]. A
second new ingredient involves identifying and studying cancellations that occur in the
geometric invariants we study, and we give the details of these cancellations. We begin in
Sect. 5 with operator estimates, that justify representations of the invariants by invariants
of a sequence of approximating problems. Related estimates show that we can exhibit
cancellations in the difference quotients for the approximating problems. In order to
estimate these cancellations, we pass from operator estimates to the study of traces in
Sect. 6 and Sect. 7.

Twisting partially breaks supersymmetry, as explained in detail in [11]. Half the
supercharges are translation and twist invariant, while the other half of the supercharges
are not. The elliptic genus can be written as a function of the invariant charges. We
restrict the 3n-real twisting angles to lie on a line inR3n, parameterized by one angle
φ. Doing this yields one invariant supercharge that we denoteQ, and which commutes
both with translations and the twist group. This supercharge satisfiesQ2 = H + P . A
second supercharge (one that formally exists forφ = 0) is neither translation nor twist
invariant. But it is well-behaved in the sense that we can estimate the error terms in the
supersymmetry algebra, and we use one of these estimates in this paper.1

In the end, we obtain the representation of the elliptic genus in terms of theta functions.
The partition function then satisfies certain properties under transformations defined by

1 Other estimates on the error terms in the supersymmetry algebra play a role if one wants to identify the
limiting quantum field theory with full supersymmetry in the limit as the twists are removed. The elliptic
genus turns out to be the boundary value of an entire function ofφ ∈ C. In particular, the limitφ → 0 exists.
Since the Hilbert space and operators we study depend onφ, we define a limit of field theories as a limit of
expectation values. With such a limit, as long as we keep a well-behaved, non-zero potential, we recover a
standard quantum field theory asφ → 0.
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the modular groupSL(2,Z), acting on the complex space-time coordinateτ defined
below. At first this seems surprising, as the theta functions and conformal symmetry
are generally associated with zero mass fields or with conformal field theory. For this
reason, we describe theSL(2,Z) symmetry as ahidden aspect of these Wess–Zumino
models.

Our results here build on work of Witten [21] and Connes [1], combining these
ideas with results from our theory of twist quantum fields [4,10] and our work in [6].
The elliptic genus is an index invariant, and as explained in Sect. IX of [6], it fits
into the general framework of equivariant, non-commutative geometry (entire cyclic
cohomology), characterized by the Dirac operatorQ on loop space. However, the elliptic
genus is only one such invariant, from a whole family of invariants, that result from the
JLO-cocycle [13]. Therefore we suggest that it may be possible, within the framework of
the Wess–Zumino examples that we study here, to find closed form expressions for some
other invariants given in [6]. We formulated various representations for such invariants
in [7,9], and these might be useful in computation.

We prove here the representation for the elliptic genusZV . Our proof relies on a
series ofa priori estimates and other methods from constructive quantum field theory. In
particular, we studyZλV , whereλ denotes a real parameter, and establish differentiability
of ZλV in λ for λ > 0, and eventually thatZλV is a constant function ofλ. Another key
estimate is to show thatZλV does not jump atλ = 0. In fact,ZλV is a priori Hölder
continuous atλ = 0. We obtain any positive Hölder exponentα < 2/(ñ − 1), namely
there is a constantM = M(α, V, ) such that∣∣∣ ZλV − Z0

∣∣∣ ≤ M λα, (1.5)

for λ ∈ [0,1]. For potentials of large degree this exponent is small, but strictly positive.
These two results combine with the vanishing of the derivative, to show thatZλV is
actually a constant function ofλ ∈ [0,1]. We then computeZV by evaluatingZ0.

1.1. Assumptions. Let us give more details. The real-time bosonic fieldϕRT = {ϕRT,i}
hasn components designatedϕRT,i , where 1≤ i ≤ n. The corresponding real-time
fermionic fieldsψRT = {ψRT,α,i} has 2n components labeled byα, i with i as before and
1 ≤ α ≤ 2.All these fields are complex, and so given 3n twist constants& = {&bi ,&fα,i},
there is a one-parameter groupU(θ) such that

U(θ)ϕRT,iU(θ)
∗ = ei&bi θϕRT,i , and U(θ)ψRT,α,iU(θ)

∗ = e&bα,i θψRT,α,i . (1.6)

Also, the momentum operator implements spatial translations,

eiσP ϕRT,i (x, t)e
−iσP = ϕRT,i (x − σ, t),

and

eiσPψRT,α,i(x, t)e
−iσP = ψRT,α,i(x − σ, t). (1.7)

These properties uniquely determine each generatorJ andP , up to an additive constant;
we choose these constants in thenormalization condition NC below.

A twist field has the additional property that these two groups are related. Translation
around the circle results in multiplying each component of the field by a phase. Thus
there are 3n-independent twisting anglesχ = {χbi , χfα,i} such that

ϕRT,i (x + �, t) = eχbi ϕRT,i (x, t), and ψRT,α,i(x + �, t) = eχbα,i ψRT,i (x, t). (1.8)
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Our superpotentialV is a holomorphic polynomial fromCn toC, and it determines the
coupling ofϕRT withψRT. LetVi denote the directional derivative ofV , namelyVi(z) =
∂V (z)/∂zi . We study a holomorphic polynomial superpotentialV with two other basic
properties: the potential isquasi-homogeneous (QH) and the potential satisfies certain
elliptic bounds (EL). Furthermore, we assume that the twist constants and twisting angles
satisfy certaintwist relations (TR). Finally we assume certainnormalization conditions
(NC). We now briefly summarize these four hypotheses:

QH (Quasi-homogenity) The superpotential functionV: C
n �→ C is a holomorphic,

quasi-homogeneous polynomial of degreeñ at least two. This means that there aren
constants&i calledquasi-homogeneous weights, such that 0< &i ≤ 1

2 and

V (z) =
n∑
i=1

&i zi
∂V (z)

∂zi
. (1.9)

EL (Elliptic Property) Given 0< ε, there existsM < ∞ such that the functionV
satisfies

|∂αV | ≤ ε |∂V |2 +M, and |z|2 + |V | ≤ M
(
|∂V |2 + 1

)
. (1.10)

Here∂αV denotes any multi-derivative ofV , while |z| denotes the magnitude ofz, and
|∂V |2 = ∑n

i=1 |∂V/∂zi |2 is the squared magnitude of the gradient ofV .

TR (Twist Relations) Define the 3n twist constants& in J as functions of then
quasi-homogeneous weights&i ,

&bi = &i, &
f
1,i = &i, and &f2,i = 1−&i. (1.11)

Choose the 3n twisting anglesχ to be proportional to the twist constants&, namely

χbi = &iφ, χ
f
1,i = &iφ, and χf2,i = (1−&i) φ, (1.12)

whereφ is a single twisting parameter that we take to lie in the interval(0, π ].
NC (Normalization Conditions) Choose the additive constants in the generatorsJ

andP so the Fock ground state&vac is an eigenvector with the following eigenvalues2:

P&vac = 0, and J&vac = −1

2
ĉ &vac,

where

ĉ =
n∑
i=1

(
&
f
2,i −&f1,i

)
=

n∑
i=1

(1− 2&i) . (1.13)

This ensures thatJ and−J have the same spectrum.
In [10] we establish

Proposition 1.1. Assume that V is a holomorphic polynomial satisfying EL of Sect. 1.1.

(i) There exists a self-adjoint quantum field twist Hamiltonian H(V ) that is the norm-
resolvent limit of a sequence of approximating Hamiltonians H (V ) defined in
Sect. 4.

2 The constant̂c recurs in these problems and is called thecentral charge. In factĉ characterizes the weight
of the elliptic genus as a modular function, as pointed out in [21].
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(ii) The self-adjoint semi-group e−βH(V ) is trace class for β > 0.
(iii) Suppose in addition that V is quasi-homogeneous, and that the twist constants

& and the twisting angles χ satisfy TR. Then the Hamiltonians H and H both
commute with the two-parameter unitary group eiθJ+iσP of space translations and
twists, and they also commute with � = (−I )Nf .

We introduce some further notation. With�(τ ) the imaginary part ofτ , let H = {τ :
0< �(τ )} designate the upper half plane. We use the parameterσ ∈ R, and the strictly
positive parametersβ, θ , andφ. We take

τ = σ + iβ
�

∈ H. (1.14)

In terms of these parameters, define the variables

q = e2πiτ , so |q| < 1, y = eiθ , so |y| = 1, and z = eiφτ , so |z| < 1.
(1.15)

Consider partition functions as functions ofτ , θ , andφ, related toq, y, andz as above.
The Jacobi theta function of the first kindϑ1(τ, θ), defined forτ ∈ H, for θ ∈ C, with
period 8 inτ , and with period 4π in θ , is given by

ϑ1(τ, θ) = iq 1
8

(
y−

1
2 − y 1

2

) ∞∏
n=1

(1− qn)(1− qny)(1− qny−1). (1.16)

This function is odd in the second variable, namelyϑ1(τ, θ) = −ϑ1(τ,−θ). We follow
the standard notation in Sect. 21.3 of Whittaker and Watson [20], with the exceptions
noted above.

2. Main Results

We study the partition function

ZλV = TrH
(
�e−iθJ−iσP−βH(λV )

)
. (2.1)

ForV = 0, the heat kernele−βH0 is also trace class, on account of the non-zero twisting
parameterφ. Given a non-zero potentialV satisfying QH and EL, we associate a family
of potentialsλV , whereλ ∈ [0,1], and also a generatorJ of symmetry with parameters
& specified by TW and normalization given by NC. The partition functionZ0 defined
by λ = 0 has an implicit dependence onV , brought about through the choice ofJ . We
devote the remainder of this paper to establishing the following theorem and its corollary.

Theorem 2.1. Assume the polynomial potentialV of degree ñ ≥ 2satisfies QH and EL of
Sect. 1.1. Consider the self-adjoint HamiltonianH = H(λV ), as defined in Proposition
1.1 for λ ≥ 0. Assume that the twist fields satisfy assumptions TR, and that P and J
satisfy NC.

(i) The map

λ �→ ZλV (τ, θ, φ) (2.2)

is differentiable in λ for λ > 0.
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(ii) Choose α so that 0 ≤ α < 2/(ñ− 1). There exists a constantM = M(α, V ) such
that for λ ∈ [0,1], ∣∣∣Z0 − ZλV

∣∣∣ ≤ M λα. (2.3)

Corollary 2.2. The map (2.2) is constant for 0 ≤ λ ≤ 1. The partition function ZV

depends on V only through its weights &, and it equals

ZV (τ, θ, φ) = zĉ/2
n∏
i=i

ϑ1(τ, (1−&i) (θ − φτ))
ϑ1(τ,&i (θ − φτ)) . (2.4)

Remark. Corollary 2.2 shows thatZV (τ, θ, φ) extends to a holomorphic function for

τ ∈ H, θ ∈ C, andφ ∈ C. If a, b, c, d ∈ Z, andad − bc = 1, then

(
a b

c d

)
∈ SL(2,Z).

Let

τ ′ = aτ + b
cτ + d , θ ′ = θ

cτ + d , and φ′ = φτ

aτ + b . (2.5)

The analytic continuation of the partition functionZV (τ, θ, φ) obeys the transformation
law

ZV (τ ′, θ ′, φ′) = e2πi
(
ĉ
8

)(
c(θ−φτ)2
cτ+d

)
ZV (τ, θ, φ). (2.6)

One obtains limiting values from the representation (2.4) as the parametersφ, θ , or
q vanish; these limits are not uniform and do not commute. Define the integer-valued
index of the self-adjoint operatorQ with respect to the grading� as the difference in
the dimension of the kernel and the dimension of the cokernel ofQ as a map from the
+1 eigenspace of� to the−1 eigenspace of�. Denote this integer by Index�(Q).

Corollary 2.3. We have the following limits.

(i) As φ tends to zero, the partition function converges to3

lim
φ→0

ZV =
n∏
i=i

ϑ1(τ, (1−&i) θ)
ϑ1(τ,&iθ)

. (2.7)

As θ → 0, the partition function converges to

lim
θ→0

ZV = zĉ/2
n∏
i=1

ϑ1(τ, (1−&i) φτ)
ϑ1(τ,&iφτ)

. (2.8)

3 The existence of a field theory forφ = 0 requires special analysis. Forλ �= 0, this can be established as
a consequence of the assumption EL forV . The field theory is theφ → 0 limit of the twist field theory, and
the elliptic genus of the limiting theory is the limit (2.7). It agrees with the formula proposed in [17]. In the
caseλ = 0, the elliptic genus also has aφ → 0 limit as long as 0< |θ | < 2π , but this limit is not the genus
of a limiting theory.
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(ii) For θ ∈ (0, π), we may take the iterated limit as φ → 0 and then q → 0 to obtain
the equivariant, quantum- mechanical index studied in [9],

lim
q→0

(
lim
φ→0

ZV
)
=

n∏
i=1

sin((1−&i)θ/2)
sin(&iθ/2)

. (2.9)

(iii) The integer-valued index Index�(Q) can be obtained as

Index�(Q) = lim
θ→0

(
lim
φ→0

ZV
)
= lim
φ→0

(
lim
θ→0

ZV
)

= lim
θ→0

(
lim
q→0

(
lim
φ→0

ZV
))

=
n∏
i=1

(
1

&i
− 1

)
.

(2.10)

(iv) On the other hand,

lim
θ→0

(
lim
q→0

ZV
)
= lim
q→0

(
lim
θ→0

ZV
)
= 1. (2.11)

Examples. For anyn, if V (z) = ∑n
i=1 z

ki
i , with 2 ≤ ki ∈ Z, thenV satisfies QH and

EL, and

&i = 1

ki
, ĉ =

n∑
i=1

ki − 2

ki
,and Index�(Q) =

n∏
i=1

(ki − 1). (2.12)

Forn = 2, withV (z) = zk11 + z1zk22 , the potential also satisfies QH and EL. In this case,

&1 = 1

k1
, &2 = k1 − 1

k1k2
, ĉ = 2

(k1 − 1)(k2 − 1)

k1k2
,

and

Index�(Q) = k1(k2 − 1)+ 1. (2.13)

Remark. The integer-valued index (2.10) is stable under a class of perturbations ofV

that are not necessarily quasi-homogeneous. Briefly, we require thatV = V1+V2, where
V1 satisfies the hypotheses QH and EL above. WhileV2 is a holomorphic polynomial, it
is not necessarily quasi-homogeneous. In place of this, we assume that the perturbation
V2 is small with respect toV1 in the following sense: given 0< ε, there exists a constant
M1 <∞ such that for any multi-derivative∂α of total degree|α| ≥ 1,

|∂αV2| ≤ ε|∂V1| +M2. (2.14)

3. Supercharge Forms

In this section, we define the superchargeQ as a densely-defined, symmetric, sesqui-
linear form. In later sections, we consider a family of self-adjoint operatorsQ that are
mollifications ofQ. The operatorsQ have a norm resolvent limit, showing that the
sesquilinear formQ actually defines an unbounded operator. The definition ofQ does
not require renormalization.
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The Hilbert space of our example is a Fock spaceH = Hb⊗Hf . The bosonic Hilbert
spaceHb and the fermionic Hilbert spaceHf are the symmetric and respectively the
skew-symmetric tensor algebras over the one particle spaceK. HereK is the direct sum
of 2n- copies ofL2(S1). The free HamiltonianH0, the momentum operatorP , the total
number operatorN = Nb+Nf , and twist generatorJ = J (&)are self-adjoint operators
on H. HereNb is the total bosonic number operator, and it acts onH = Hb ⊗ Hf as
Nb ⊗ I , etc. The bosonic time-zero fieldϕ(x), its conjugate fieldπ(x) and fermion
time-zero fieldsψ(x) are operator valued distributions onH.

There is a dense linear subsetD ⊂ H, obtained by replacingL2(S1) by C∞
0 (S

1),
and by taking vectors with a finite number of particles. The domainD provides a natural
domain on which to define operators, and then to extend them by closure. Furthermore
the operatorsN , �,H0, P , andeiθJ all mapD into D.

In addition to defining operators with the domainD, we also define sesqui-linear
forms with domainD × D. These are maps from pairs of vectors inD toC, that are anti-
linear in the first vector and linear in the second vector. By polarization, each such form
can be expressed as a sum of four diagonal elements, namely as a sum of four expectations
in vectors inD. On the domainD × D, the components of the time-zero fieldsϕi(x),
πi(x) andψα,i(x), as well as normal-ordered polynomials in these components, are
sesqui-linear forms; see for example [2]. The values of these forms defined in this way are
C∞ functions ofx.We call themC∞-sesqui-linear forms with the domainD × D. Unless
we specify otherwise, we use these domains and then extend the resulting operators or
forms by closure. Ultimately our goal is to redefine operators and forms with domains
determined by the range of a heat kernel of the Hamiltonian.

Choose a potential functionV satisfying QH and EL. This potential as a function
of the scalar complex, boson fieldϕ(x) determines the energy density of our system as
follows. Letψ(x)denote our Dirac field. Monomials in the components of the scalar field
ϕi(x) (or in the components of the adjoint field, but not simultaneously in the components
of the field and of its adjoint) are normal ordered. Since the boson fields and the Dirac
fields act on different factors in the tensor product, the product of a normal ordered boson
field and a Dirac field is also normal ordered. Letλ denote a real parameter lying in the
interval[0,1]. Define the normal ordered densityD(λ; x) as theC∞ sesqui-linear form

D(λ; x) =
n∑
j=1

{
iψ1,j (x)

(
πj (x)− ∂xϕj (x)∗

) + λψ2,j (x)Vj (ϕ(x))
∗} , (3.1)

with domainD × D. The adjoint of aC∞ sesqui-linear form is also aC∞ sesqui-
linear form. Define the sesqui-linear formD(λ; x)∗ by polarization of the expectations
〈f,D(λ; x)∗f 〉 = 〈f,D(λ; x)f 〉∗, for f ∈ D.

Define the supercharge densityQ(λ; x) as the sesqui-linear form

Q(λ; x) = D(λ; x)+D(λ; x)∗. (3.2)

The integral of these densities overS1 yield supercharges that are densely-defined,
sesqui-linear forms with the domainD × D, namely

D(λ) =
∫ �

0
D(λ; x) dx, and Q(λ) =

∫ �

0
Q(λ; x) dx = D(λ)+D(λ)∗, (3.3)
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whereD(λ)∗ = ∫ �
0 D(λ; x)∗ dx. If we also assume the twist assumption TW, then these

forms have the properties for allλ ∈ [0,1], all σ , and allθ ,

�Q(λ) = −Q(λ)�, eiσP Q(λ) = −Q(λ) eiσP ,
and

eiθJ Q(λ) = −Q(λ) eiθJ . (3.4)

The supercharge that we denoteQ(λ), or sometimesQ(λV ), is the one that we study
most in this paper. DefineD0 = D(0) andQ0 = Q(0), and defineDI andQI so that

D(λ) = D0 + λDI , and Q(λ) = Q0 + λQI . (3.5)

The superchargeQ0 extends by closure to a self-adjoint operatorQ0. (This means that
the form obtained by closingQ0 with the domainD × D uniquely determines a self-
adjoint operator that we also nameQ0.) This operator is essentially self adjoint on the
domainD, and also maps this domain into itself. Furthermore,Q0 commutes with the
operatorP and with the operatorJ defined for any&. The operatorQ0 anticommutes
with � = (−I )Nf . The square of the supercharge operatorQ0 has the property

Q2
0 = H0 + P. (3.6)

AsQ0 commutes withP , it follows from (3.6) thatQ0 commutes withH0. Furthermore,
asP ≤ H0, we have the elementary inequality of forms,

±Q0 ≤ |Q0| ≤
√

2H 1/2
0 . (3.7)

We also require the second component of the supercharge. This is a sesqui-linear form
Q2(λ), defined as the integral

∫ �
0 Q2(λ; x) dx of the densityQ2(λ; x) = D2(λ; x) +

D2(λ; x)∗. HereD2(λ; x) is theC∞-sesqui-linear form

D2(x) =
n∑
j=1

{
iψ2,j (x)

(
πj (x)

∗ + ∂xϕj (x)
) + λψ1,j (x)Vj (ϕ(x))

}
e−iφx/�. (3.8)

As with the first component of the supercharge,

�Q2(λ) = −Q2(λ) �, (3.9)

and we have the decomposition

Q2(λ) = Q2,0 + λQ2,I , (3.10)

whereQ2,0 andQ2,I are independent ofλ. The formQ2,0 uniquely determines a self-
adjoint operator that we also denote asQ2,0.

However, unlike the case of the operatorQ0, the operatorQ2,0 is neither translation
invariant nor twist invariant. Nevertheless, the square ofQ2,0 is invariant under both
these groups. This square equals

Q2
2,0 = H0 − P + φR, (3.11)
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where

R = −2

�

n∑
i=1

∫ �

0
:ψ2,i (x)ψ2,i (x)

∗: dx. (3.12)

Here: · : denotes normal ordering. An explicit representation of�
2R can be given as a

difference of two terms, each term being a sum of number operators for a subset of the
fermionic modes, see [4]. This ensures, in particular, that

±R ≤ 2

�
N, (3.13)

whereN denotes the total number operator.

4. Approximating Supercharge Operators

In order to study the properties of the Hamiltonian, we introduce approximating families
of supercharge formsQ (λ) indexed by a parameter ∈ [0,∞], and with the property
Q0(λ) = Q0, andQ∞(λ) = Q(λ). Let

Q (λ) = Q0 + λQI, , and Q2, (λ) = Q2,0 + λQ2,I, . (4.1)

In [4] we introduce a family of mollifier functionsκbi, andκfα,i, for the scalar and Dirac
fields respectively. These mollifiers act by convolution, with a particular mollifier for
each field component.The mollifiers have an index that specifies a momentum scale for
the mollifier, and each mollifier converges to the Dirac measureδ as → ∞. We define
mollified time-zero fieldsϕ (x) andψ (x) as sesqui-linear forms with components

ϕi, (x) =
∫ �

0
κbi, (x − y) ϕi(y) dy, and ψα,i, (x) =

∫ �

0
κ
f
α,i, (x − y)ψα,i(y) dy.

(4.2)

We apply the mollifiers only to the fields that occur in the termsQI andQ2,I . These
terms are the interaction terms and are proportional toλ; in this way we mollify the
boson and the fermion fields symmetrically.

We construct the mollifiers from a single smooth, positive functionκ̃ as follows. Let

κ̃sdi(k) = 1(
1+ k2

)ε , (4.3)

where 0< ε ≤ ε(V ), and where we chooseε(V ) sufficiently small. We choose for̃κ(k)
any smooth function such that

κ̃sdi(k) ≤ κ̃(k) ≤ κ̃(0) = 1. (4.4)

The lower bound oñκ(k) by the strictly positive functioñκsdi(k) is the property that we
call slow decrease at infinity or sdi, and it ensures thatκ̃(k) is sufficiently close to being
local, i.e.κ̃(k) = 1. We introduced this sdi property in [14] in order to establish stability
for a purely-bosonic, bi-local interaction. In the supersymmetric case, the mollified
Hamiltonian is bilocal and it is therefore natural to use an sdi mollifier. In [10] we
establish stability based on these ideas. We represent the trace of the heat kernel of an
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approximate Hamiltonian as a functional integral. The sdi property allows us to study a
partition of unity of function space, and to show on each patch that the bi-local bosonic
self-interaction can be bounded by a similar local self-interaction (with a coefficient that
depends on the patch). The method is sufficiently robust that we can also estimate the
non-local contributions from the ferm ionic determinant. We describe this phenomenon
in more detail in Sect. 5.

We define the family of periodic mollifier functions indexed by by the Fourier
series

κ (x) = 1

�

∑
k∈ 2π

�
Z

κ̃(k/ ) e−ikx, (4.5)

where the series forκ converge in the sense of distributions. Each kernelκ (x) satisfies

κ (x + �) = κ (x). (4.6)

Denote byS the space ofC∞, periodic functions on the circle. Letκ denote the integral
operatorκ : S → S defined by the integral kernelκ (x, y) = κ (x − y). In other
words,κ is the operator of convolution byκ (x) on S. Given the usual topology on
these smooth functions, the adjointκ+ of the operatorκ acts on the dual space of
distributions on the circle, defined by

(
κ+ ϕ

)
(f ) = ϕ(κ f ). This adjoint is an integral

operator with the kernel
(
κ+ 

)
(x, y) = κ (y − x) = κ (x − y).

Consider the spaceSbi = e−i&iφx/�S of smooth functions on the circle satisfying the
twist relationf (x + �) = e−i&iφf (x). These are the test functions for the components
of the bosonic, time-zero, twist field. Likewise define the spacesSf1,i = Sbi andSf2,i =
e−i(1−&i)φx/�S. For each , define operatorsκbi, acting on

(Sbi )′, operatorsκf1,i, acting

on
(
Sf1,i

)′
, and operatorsκf2,i, acting on

(
Sf1,i

)′
. To simplify notation we designate the

mollifiers acting on the dual space byκb , etc., without the adjoints, defining them as the
convolution operators with kernels

κbi, (x) = κf1,i, (x) = ei&iφx/�κ (x), and κ
f
2,i, (x) = ei(1−&i/�)φxκ (x).

(4.7)

The kernels satisfyκbi, (x) = κbi, (−x), and similarlyκfα,i, (x) = κ
f
α,i, (−x). They

satisfy the twist relations

κbi, (x + �) = κf1,i, (x + �) = ei&iφκbi, (x),
and

κ
f
2,i, (x + �) = ei(1−&i)φκf2,i, (x). (4.8)

The operatorsκbi, converge as → ∞ to the identity as operators on
(Sbi )′, and

similarly for κfα,i, on
(
Sfα,i

)′
. Correspondingly, the kernels converge as distributions

to a Dirac measureδ,

lim
 →∞ κ

b
i, (x) = lim

 →∞ κ
f
α,i, (x) = δ(x). (4.9)
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Also definen families of spatially-dependent kernelsvi, (x) by the Fourier representa-
tions that converge in the sense of distributions,

vi, (x) = ei(1−&i)xφ/�
1

�

∑
k∈ 2π

�
Z

|κ̂(k/ )|2e−ikx
 . (4.10)

In the sense of distributions,

lim
 →∞ vi, (x) = δ(x). (4.11)

With these definitions, we establish in [10] that the formsQ andQ2, determine
self-adjoint operators. The operatorQ have the properties

�Q = −Q �, and Q e
iθJ+iσP = eiθJ+iσP Q , (4.12)

for all realθ , σ . Furthermore the operatorsQ2, satisfy

�Q2, = −Q2, �. (4.13)

But these operatorsQ2, do not commute with the groupeiθJ+iσP .
The operatorQ satisfies the normal relation of the first component of a supercharge

and a HamiltonianH ,

Q2
 = H + P. (4.14)

Here the HamiltonianH is a perturbation of the free, twist- field HamiltonianH0 =
Hb0 +Hf0 , and has the (non-local) form

H = H (λV ) = H0 +
n∑
i=1

∫ �

0
d x

∫ �

0
d y Vi(ϕ (x))

∗ λ2vi, (x − y) Vi(ϕ (y))

+ λ
(
Y + Y ∗) , (4.15)

where the boson-fermion couplingY is the generalized Yukawa interaction

Y = Y (V ) =
n∑

i,i′=1

∫ �

0
ψ1,i, (x)ψ2,i′, (x)

∗Vii′(ϕ (x)) dx. (4.16)

On account of the positive definite nature of the kernelλ2vi, (x), the bosonic part of
H , namely

Hb = Hb0 +
n∑
i=1

∫ �

0
d x

∫ �

0
d y Vi(ϕ (x))

∗ λ2vi, (x − y) Vi(ϕ (y)), (4.17)

is a sum of positive operators. In fact, the bosonic Hamiltonian can also be written,

Hb = Hb0 + λ2Q2
I, , (4.18)
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where we note the identity,

QI, (V )
2 =

n∑
i=1

∫ �

0
d x

∫ �

0
d y Vi(ϕ (x))

∗ λ2vi, (x − y) Vi(ϕ (y)). (4.19)

The bosonic HamiltonianHb is not normal ordered, and unlikeH (λV ), it has no limit
as → ∞.

The second family of approximate superchargesQ2, are also related toH . How-
ever, their square has an error term in the standard supersymmetry algebra,

Q2
2, = H − P + φR, (4.20)

whereR is the same operator that arose when analyzing the square of the free supercharge
Q2,0. The error term is given in (3.12). We use the following result from [10]:

Proposition 4.1. Assume the potential V satisfies the assumptions QH, EL, assume the
relations TR, and assume the definitions ofQ ,Q2, ,H , and P in Sect. 3 and Sect. 4.
Then the formsQ ,Q2, ,H , and P define self adjoint operators on H. The operators
H are bounded from below. The operators Q , H , and P mutually commute, and
they also commute with J .

5. Estimates on Operators

We consider here the basic properties of the Hamiltonian and the supercharges. This
leads to consideration of estimates that involve implicit renormalization cancellations.
These estimates depend only on the form of the underlying operatorsH , P , N , etc.,
and they lead to inequalities of operators or their norms. These estimates do not involve
further cancellations of the sort that arise in the proof of estimates on partition functions,
that we consider in the following section.

5.1. A Priori Estimates. The results here require certaina priori estimates involving
the family of HamiltoniansH = H (λV ), or the associated family of self-adjoint
semigroupse−βH (λV ) that theH (λV ) generate. The proofs of these estimates are
lengthy, so we establish them as the central results in the companion paper [10]. These
estimates are of utmost importance, so we give an overview by collecting together
the necessary statements. Within the context of constructive quantum field theory, the
estimates we assume are of a standard nature, though they have not been previously
proved in the context of zero-mass (twist) fields that we use here. The operators occurring
in this section have been introduced earlier in this paper. For more details about these
definitions, see [4]; for analytic details, see [10].

• In case the following inequalities involveβ, we takeβ > 0. We choose a given, fixed
φ ∈ (0, π ], and a given, fixedV satisfying QH and EL of Sect. 1.1, and we define
the Hamiltonian with the twist relations TR. The operators in question act on a Fock
spaceH = H(&, φ) depending on the parameters&,φ. We fix these parameters
throughout the approximations in this paper. By convention, we generally do not note
the dependence of constants onφ, while we generally indicate the dependence onV .
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• We require certain estimates that are uniform in , the parameter that designates
the high-frequency mollifier. There exist positive, finite constantsM1 = M1(V ),
M2 = M2(V ), andM = M(β, V ) that are independent of , and ofλ ∈ (0,1], and
such that

N ≤ M1H (λV )+M2, (5.1)

H
1/2
0 ≤ M1H (λV )+M2, (5.2)

and

TrH
(
e−βH (λV )

)
≤ M(β). (5.3)

There exists a self-adjointR(β) = R(β; λ), that is a semigroup inβ and that depends
on the parameterλ, and such that

‖e−βH (λV ) − R(β)‖ → 0, as  → ∞, (5.4)

for eachλ ∈ (0,1].
• We require the following estimate that isnot uniform in  . Given , there exist

constantsM1 = M1( , V ) andM2 = M2( , V ) such that for allλ ∈ [0,1],
H0 + λ2Q2

I, ≤ M1H (λV )+M2. (5.5)

Remarks. It is no loss of generality in (5.5) to increase the constants, if necessary, so in
addition 1≤ M1 andH0 + λ2Q2

I, + I ≤ M1H (λV )+M2, soH0 + λ2Q2
I, + I ≤

M1 (H (λV )+M2) as well. We make this assumption.
From the norm convergence of semigroups (5.4), we infer that the limiting semigroup

R(β) has a self-adjoint generatorH = H(λV ). This defines the limiting Hamiltonian,
andR(β) = e−βH(λV ). The uniform bound on the trace ofe−βH (λV ) ensures that
H(λV ) is bounded from below,4 and there exists a constantM3 = M3(λV ) such that

0 ≤ H(λV )+M3. (5.6)

For this limiting theory, there is a self-adjoint operatorQ = Q(λV ) that commutes with
P and that anticommutes with�, for which

Q(λV )2 = H(λV )+ P. (5.7)

We comment briefly on the mollifier̃κ(k/ ) that we employ, rather than a mollifier,
for example, that completely eliminates Fourier modes with large|k|. In the latter case,
the approximating Hamiltonians have not been proved to be bounded from below. We
first studied the special advantages of a mollifer like with slow decrease at infinity in
[14], where we used this property that expresses “almost-locality”, to show that a class
of bosonic Hamiltonians are bounded from below. We showed that the normal-ordered,
purely-bosonic bilocal Hamiltonian:Hb :, withHb of the form (4.17), is bounded from
below. Specifically, in [14] we treat the case withn = 1, with a massive (rather than a
massless) unperturbed HamiltonianHb0,m, and with no twist,φ = 0.

We outline the basic idea of our method in [10] to utilize the slowly decreasing prop-
erty of the mollifier to prove the estimate (5.3).We begin by representing TrH

(
e−βH 

)
as

4 Without good control over convergence, such as the norm-convergence of semigroups that is the case
here, a uniform bound like (5.1) or (5.2) onH (λV ) is insufficient information to establish a lower bound on
H(λV ).



104 A. Jaffe

a functional integral. This is the functional integral for the normal-ordered purely bosonic
actions, multiplied by a regularized Fredholm determinant arising from the expectation
in the fermionic modes. We insert an appropriate partition of unity 1= ∑∞

i′=1χi′ into
this integral, thus dividing the integration into a sum of integrals over patches. To obtain
an effective bound, we need to replace the non- local bosonic part of the action by a
related local term. We do this on each patch, using several things: the positive defi-
nite form of the interaction term, the explicit form of the mollifier functionκ̂(k/ ), in
particular its monotonic property and its slowly decreasing character as a function of
|k|. Using these properties, we bound the bilocal (boson ic) action from below on the
patchχi′ . We obtain a lower bound on the bilocal action with the non-local coupling
constantλ2vi, (x − y) by a similar local action but with a local, coupling constant of
the formλ2 κ̃(i′d/ )2 δ(x − y). Hered + 1 = ñ denotes the degree of the polynomial
V . The coefficient ofλ2 here isκ̃(i′d/ )2, and this vanishes asi′ → ∞ (namely at high
momentum). In fact for constant , we have the asymptoticsλ2κ̃(i′d/ )2 ∼ λ2i′ −2ε .
We use the local action to estimate further non-local perturbations of lower degree, as
well as local perturbations of lower degree, on the patchχi′ . This results in an additive,
constant error termri′ that has a magnitude|ri′ | ≤ o(1)(κ̃(i′d/ )−2) ≤ o(1)(i′)2ε ,
which diverges asi′ → ∞. The measure|χi′ | of the setχi′ satisfies|χi′ | ≤ e−i′ ε

′′
,

whereε′′ = ε′′(V ) > 0. This constant is small, and it depends only on the polynomial
V . Therefore, fixingV , we can chooseε(V ) ≥ ε > 0 sufficiently small so that the prod-
uct e|ri′ ||χi′ | is small for largei′. When summed overi′ it leads to a finite estimate on
the integral. We also use the approximate local bosonic action to estimate the non-local
terms arising from the regularized Fredholm determinants. In this fashion we establish
the uniform upper bound (5.3) on the trace of the family of approximating heat kernels.
The method to establish the remaining bounds is similar.

5.2. Traces. In this section we collect a few general remarks that we use later. The
Schattenp-norm ofT for operators onH is defined as

‖ T ‖p =
(
TrH

((
T ∗T

)p/2))1/p
.

These norms satisfy Hölder’s inequalities‖T S‖r ≤ ‖T ‖p‖S‖q , where r =
pq/(p + q), and 1≤ r, p, q. Furthermore, the trace norm‖ · ‖1 is also given by
‖T ‖1 = supunitaryU |TrH (UT )|, see Sect. III of [18]. Thus

|TrH (T )| ≤ ‖T ‖1. (5.8)

An operatorT with ‖T ‖1 < ∞ is said to betrace class, and such operators have a
basis-independent trace. A sufficient condition to ensure the cyclicity identity of the
trace,

TrH (AB) = TrH (BA), (5.9)

is thatA is trace class andB is bounded.
One says that a self-adjoint semigroupR(t) is C-summable if there is a function

M(t) < ∞ such that‖R(t)‖1 < M(t) for all 0 < t . A family of semigroupsRj (t) is
uniformly C-summable if ∥∥Rj (t)∥∥1 ≤ M(t), (5.10)

for all j .
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Proposition 5.1. Assume that {Rj (t)} are a family of uniformlyC-summable semigroups
on a Hilbert space H, and assume that

∥∥Rj (t)− R(t)∥∥ → 0 as j → ∞. Then R(t) is
trace class, and Rj (t) converges to R(t) in trace norm,

lim
j→∞

∥∥Rj (t)− R(t)∥∥1 = 0, and ‖R(t)‖1 ≤ M(t), for all 0< t. (5.11)

Furthermore, for any bounded operator A,

TrH (AR(t)) = lim
j→∞ TrH

(
ARj(t)

)
, for all 0< t. (5.12)

Proof. Write

Rj (t)− Rm(t) = Rj (t/2)
(
Rj (t/2)− Rm(t/2)

) + (
Rj (t/2)− Rm(t/2)

)
Rm(t/2).

(5.13)

Thus by Hölder’s inequality,

‖Rj (t)− Rm(t)‖1 ≤ 2M(t/2) ‖Rj (t/2)− Rm(t/2)‖. (5.14)

HenceRj (t) is a Cauchy sequence in the Schatten ideal of trace class operators. Thus
there exists a trace-class limit̃R(t), for which∥∥Rj (t)− R̃(t)∥∥1 → 0, and

∥∥R̃(t)∥∥1 ≤ M(t). (5.15)

Since
∥∥Rj (t)− R̃(t)∥∥ ≤ ∥∥Rn(t)− R̃(t)∥∥1, we infer from (5.15) that̃R(t) = R(t).

SinceR(t) andRj (t) are trace class, ifA is bounded thenAR(t) andARj(t) are also
trace class. For a trace class operatorT , we use (5.8) and Hölder’s inequality to obtain∣∣TrH

(
ARj(t)− AR(t)

)∣∣ ≤ ∥∥ARj(t)− AR(t)∥∥1 ≤ ‖A‖∥∥Rj (t)− R(t)∥∥1, (5.16)

from which (5.12) follows. This completes the proof of the lemma."#
Lemma 5.2. Let e−βH be a self-adjoint,C-summable semigroup, and letA be a bounded
operator on H. Then the map

(σ, β) �→ TrH
(
AeiσP−βH

)
(5.17)

extends holomorphically in β to all iβ ∈ H (keeping σ ∈ R fixed). Suppose the unitary
group eiσP is a symmetry of H , and there exist constantsM1,M2 <∞ such that

±P ≤ M1H +M2. (5.18)

Then for iβ ∈ H, the map (5.17) extends analytically in σ into a strip about the real axis
of width proportional to $(β), and otherwise only depending onM1 andM2.

Proof. Theta summability ensures thatH is bounded from below, so it is no loss of
generality to add a constant toH soH ≥ I . With this convention, we can replace (5.18)
by the assumption that there exists a constantM = M(M1,M2) <∞ such that

±P ≤ MH. (5.19)
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To prove analytic continuation inβ, it is sufficient to establish a neighborhood of absolute
convergence for the power series inε of

TrH
(
e−(β+ε)H

)
=

∞∑
n=0

(−ε)n /n!TrH
(
Hne−βH

)
,

starting initially with realβ. Expressβ in its real and imaginary partsβ = $(β)+i�(β).
The operatoree�(β) is unitary, so for 0< $(β), the operatorHne−βH/2 is bounded
in norm by (n/$(β))n. So using Hölder’s inequality and (5.8)|TrH

(
Hne−βH

)| ≤
(n/$(β))n ‖e−βH/2‖1. Then the exponential series converges absolutely for|ε| <
$(β)/e, yielding

∞∑
n=0

|ε|n
n! |TrH

(
Hne−βH

)
| ≤ (1− |ε|e/$(β))−1 ‖e−$(β)H/2‖1 <∞, (5.20)

as desired. We assume thatP andH commute, so we simultaneously diagonalize these
operators. We conclude from the spectral representation and (5.19) that|P |n ≤ MnHn

for non-negative integersn. Proceed as above in the domain|ε| < $(β)/Me, the power
series inε for ei(σ+ε)P e−βH2 converges absolutely in operator norm. Using Hölder’s
inequality and (5.8), it then follows that TrH

(
eiσP−βH

)
is real analytic inσ for iβ ∈ H,

and the proof is complete."#
Proposition 5.3. Assume quantum twist fields interact, with the nonlinearity determined
by a polynomial V as specified above. Assume QH, EL, and TR of Sect. 1.1. Then there
exist constantsM1 andM2, independent of  , and such that

±P ≤ M1H +M2. (5.21)

As a consequence, with a new constantM1,

Q2
 ≤ M1H +M2. (5.22)

Proof. The identityQ2
 = H + P of (4.14) gives an upper bound on−P ,

−P ≤ H . (5.23)

In order to obtain an upper bound onP , we take into account the details concerning the
second component of the superchargeQ2, . From the relation (4.20) we infer that

P ≤ H + φR. (5.24)

Thus to establish an upper bound onP , it is sufficient to establish an upper bound onR
in terms ofH . We use the explicit form forR in (3.12), and the following comment;
see [4] for details. It therefore follows thatR satisfies the bound

±R ≤ 2

�
N, (5.25)

whereN is the total number-of-particles operator. Using (5.1), we infer thatP ≤
M1H + M2, with constants independent of . The bound (5.21) then follows, and
from (4.14) we also infer (5.22)."#
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5.3. Continuity of the Heat Kernel for λ > 0. We establish Lipshitz continuity, in the
trace-norm topology, of the map

λ �→ e−βH (λV ), (5.26)

from the parameterλ ∈ (0,1] into the approximating heat kernels. Stated in detail, for
each allowedV , each fixedj <∞, and each fixedλ ∈ (0,1], and for|λ−λ′| sufficiently
small, there exists a constantM such that∥∥∥e−βH (λV ) − e−βH (λ′V )∥∥∥

1
≤ M |λ− λ′|. (5.27)

Unfortunately, the estimates that we have proved forH (λV ) are insufficient to show
that the map (5.26) is differentiable inλ, and we do not know whether this is true. Also,
we donot know whether TrH

(
e−H (λV )

)
is differentiable inλ. However, in the next

subsection we show that the partition function TrH
(
�e−H (λV )

)
is differentiable inλ.

We study theλ-derivative of the approximating family of heat kernels. Forλ, λ′ ∈
(0,1], andλ �= λ′, define the difference quotient ofe−βH (λV ) by

Dβ(λ, λ′) = e−βH (λV ) − e−βH (λ′V )
λ− λ′ , and let λmin = min{λ, λ′}. (5.28)

In the following we letR(β) denote the self-adjoint, trace- class semigroup generated
byH (λV ), and letR′(β) denote the similar semigroup generated byH (λ′V ),

R(β) = e−βH (λV ), and R′(β) = e−βH (λ′V ). (5.29)

Define the functionFβ (λ, λ
′, s) for λ, λ′, s ∈ (0,1) for allowed potentialsV by

F
β
 (λ, λ

′, s)
= −β e−sβH (λV ) (Q (λV )QI, (V )+QI, (V )Q (λ′V )) e−(1−s)βH (λ′). (5.30)

We also write this as

F
β
 (λ, λ

′, s)
= −βR(sβ) (Q (λV )QI, (V )+QI, (V )Q (λ′V ))R′((1− s)β). (5.31)

Note that the bound (5.3) ensures thatDβ(λ, λ′) is trace class. By itself, this does not
establish (5.27), as the trace norm may diverge asλ′ → λ. Also the bound (5.3), taken
together with the bound (5.5), ensures thatF

β
 (λ, λ

′, s) is the sum of two trace-class

operators. In order to verify thatFβ (λ, λ
′, s) is trace class, write each of the two heat

kernels in (5.30) as the square of a heat kernel. The bound (5.3) shows that one of the
heat kernel factors by itself is trace class. The second heat kernel multipliesQ (λV ),
Q (λ

′V ), orQI, (V ) (either on the left or on the right); the estimates (5.3) and (5.5)
show that each such product is bounded. Since the product of a bounded operator with a
trace-class operator is trace class, we infer thatF

β
 (λ, λ

′, s) is trace class. But we have
no control over how the trace-norm diverges (for fixedβ) ass approaches an endpoint
of the interval. We now address these issues.

Let us denote the degree of the polynomialV by

ñ = degree(V ), and note 2≤ ñ, (5.32)

in order to satisfy the elliptic growth assumption EL of Sect. 1.1.
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Theorem 5.4. Assume quantum twist fields interact, with the nonlinearity determined
by a polynomial V as specified above. Assume QH, EL, and TR of Sect. 1.1. Let β > 0.
Let j ∈ Z+ be fixed. Then there exists a constantM = M(β, , V ) <∞, such that the
difference quotient Dβ(λ, λ′) satisfies the trace-norm bound∥∥Dβ(λ, λ′)∥∥1 ≤ M λ−1+1/(ñ−1)

min , (5.33)

for all λ, λ′ ∈ (0,1]. Lipshitz continuity (5.27) then follows.

Theorem 5.4 is contained in Proposition 5.5 and Corollary 5.7 that follow.

Proposition 5.5. Under the hypotheses of Theorem 5.4, there exists a constant M =
M(β, , V ) <∞ such that for λ, λ′ ∈ (0,1], for s ∈ (0,1), and for 0 ≤ α ≤ 1/(ñ−1),
the following holds:

(i) The operator Fβ (λ, λ
′, s) defined in (5.30) has a trace norm bounded by∥∥∥Fβ (λ, λ′, s)∥∥∥1

≤ M λ−1+α
min

(
s−1+α/2 (1− s)−1/2 + s−1/2 (1− s)−1+α/2) .

(5.34)

(ii) The map s �→ F
β
 (λ, λ

′, s) is continuous in the trace-norm topology.

Lemma 5.6. There exists a constant M3 = M3(j, V ) such that the following bounds
hold:

(i) For any α ∈ [0,1], the interactionQI, (V ) satisfies

QI, (V )
2α ≤ Mα

3 (N + I )α(ñ−1)

and also
QI, (V )

2α ≤ Mα
3 (H0 + I )α(ñ−1) . (5.35)

Here N is the total number operator and ñ is the degree of V .
(ii) The generalized Yukawa interaction Y + Y ∗

 = {Q0,QI, (V )} satisfies

±{Q0,QI, (V )} ≤ M3 (H0 + I )ñ−1 . (5.36)

(iii) For 0 ≤ α ≤ (ñ− 1)−1, 0< λ ≤ 1, and 0 ≤ λ′ ≤ 1,∥∥∥(H (λV )+M2)
−(1−α)/2 QI, (V )

(
H (λ

′V )+M2
)−α(ñ−1)/2

∥∥∥
≤ M3 λ

−1+α. (5.37)

Proof. The estimates leading to this bound rely on the expansion of the bosonic field
into its Fourier representation. The Fourier coefficients of the field are linear in creation
and annihilation operators, multiplied by a kernel that isl2, by virtue of the mollifierκ̃,
but with anl2 norm depending onV and also on . These expansions and properties
are given in detail in [4]. As a consequence, the operatorQ2

I, , that equals (4.19), has
an expansion in terms of the fields that is a polynomial in creation and annihilation
operators of degree 2(ñ − 1). Each monomial in this expansion, expressed in terms
of creation and annihilation operators, has anl2 kernel. As a consequence, there is
a constantM3 = M3(j, V ), such that the purely bosonic interaction termQI, (V )2



The Elliptic Genus and Hidden Symmetry 109

satisfies the upper bound,QI, (V )2 ≤ M3 (N + I )ñ−1. This estimate is a standard
property of monomials in creation and annihilation operators withl2-kernels; in the
constructive quantum field theory literature this estimate is known as anNτ -bound,
and the contribution to the constantM3 from each monomial is thel2 norm of the
corresponding kernel, see [3]. Because the twisting angle is fixed and lies in the interval
0< φ ≤ π , there is a constantM5 = M5(φ) such that the commuting operatorsN and
H0 satisfyN ≤ M5H0. Thus with a new choice of the constantM3 (and suppressing
the dependence onφ, which is fixed) we obtain the bounds (5.35) withα = 1. The
interpolation inequalities with 0≤ α ≤ 1 then follow from the Cauchy representation
for the fractional powers of the resolvents, see Chapter V, Remark 3.50 of [16].

(ii) The bound

±{Q0,QI, } ≤ Q2
0 +Q2

I, = H0 + P +Q2
I, , (5.38)

leads to the desired estimate with a new constantM3. Use the elementary boundP ≤ H0
to estimateP , and use the bound (5.35) withα = 1 to estimateQ2

I, .

(iii) The bound (5.5) with 1≤ M1 andI ≤ H (λV )+M2 ensures that

λ2QI, (V )
2 ≤ M1 (H (λV )+M2) . (5.39)

As a consequence, the domain of the operatorQI, (V ) = QI, (V ) contains all vec-
tors in the domain of(H (λV )+M2)

1/2, for anyλ > 0. It follows that we have an
interpolation inequality: for anyα ∈ [0,1],

λ2(1−α) |QI, (V )|2(1−α) ≤ M(1−α)
1 (H (λV )+M2)

1−α . (5.40)

The operator form of this inequality is∥∥∥|QI, (V )|1−α (H (λV )+M2)
−(1−α)/2

∥∥∥ ≤ M(1−α)/2
1 λ−1+α. (5.41)

Using part (i) of the lemma, we also have the operator interpolation inequality,∥∥∥|QI, (V )|α (N + I )−α(ñ−1)/2
∥∥∥ ≤ Mα/2

1 . (5.42)

Note that the bound (5.42) does not involveλ. Combining (5.41) and (5.42), and the
self-adjointness ofQI, andH (λV ), we have∥∥∥(H (λV )+M2)

−(1−α)/2 QI, (V )
(
H (λ

′V )+M2
)−α(ñ−1)/2

∥∥∥
≤

∥∥∥(H (λV )+M2)
−(1−α)/2 QI, (V ) (N + I )−α(ñ−1)/2

∥∥∥
×

∥∥∥(N + I )α(ñ−1)/2 (
H (λ

′V )+M2
)−α(ñ−1)/2

∥∥∥
≤ M(1−α)/2

1 λ−1+α.

(5.43)

We obtain the interpolation bound on∥∥∥(N + I )α(ñ−1)/2 (
H (λ

′V )+M2
)−α(ñ−1)/2

∥∥∥ ≤ Mα(ñ−1)/2
1 ,

using (5.1), as long asα(ñ− 1) ≤ 1, which we assume. This completes the proof of the
lemma. "#
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Proof of Proposition 5.5. ExpandFβ (λ, λ
′, s) according to the definition (5.31). Write

the first termR(sβ)Q (λV )QI, (V )R′((1−s)β) term in−F(λ, λ′, s)as the following
product of four bounded operators separted in braces,

R(sβ)Q (λV )QI, (V )R
′((1− s)β)

= {R(sβ/4)} {R(sβ/4)Q (λV )R(sβ/4)}
× {
R(sβ/4)QI, (V )R

′(3(1− s)β/4)} {
R′((1− s)β/4)} . (5.44)

Apply Hölder’s inequality to bound the trace norm of this product of four terms, using
the exponents1

s
,∞,∞, 1

1−s . Then

∥∥R(sβ)Q (λV )QI, (V )R′((1− s)β)∥∥1

≤ ‖R(sβ/4)‖1/s ‖R(sβ/4)Q (λV )R(sβ/4)‖
× ∥∥R(sβ/4)QI, (V )R′(3(1− s)β/4)∥∥ ∥∥R′((1− s)β/4)∥∥1/(1−s) . (5.45)

Bound the first and last factors on the right of (5.45) using the uniform estimate (5.3).
Thus

‖R(sβ/4)‖1/s

∥∥R′((1− s)β/4)∥∥1/(1−s) ≤ M(β/4). (5.46)

Use the spectral theorem to bound the second factor on the right of (5.45) uniformly in
λ, by

‖R(sβ/2)Q (λV )R(sβ/4)‖ ≤ O(1) s−1/2, (5.47)

where the constant inO(1) depends onβ and , but not onλ. Bound the third factor
in (5.45) by∥∥R(sβ/4)QI, (V )R′((1− s)β/2)∥∥

≤
∥∥∥R(sβ/4) (H (λV )+M2)

(1−α)/2
∥∥∥

×
∥∥∥(H (λV )+M2)

−(1−α)/2QI, (V )
(
H (λ

′V )
)−α(ñ−1)/2

∥∥∥
×

∥∥∥(
H (λ

′V )
)α(ñ−1)/2

R′((1− s)β/2)
∥∥∥.

(5.48)

The first factor on the right of (5.48) isO(1) s−(1−α)/2, again with the constant inO(1)
depending onβ and , but not onλ. From Lemma 5.6 we infer that the second factor
in (5.48) isO(λ−1+α), with the same proviso aboutO(1). Finally we estimate the third
factor in (5.48) byO(1)(1− s)−α(ñ−1)/2, withO(1) depending on andβ. These three
bounds yield∥∥R(sβ/4)QI, (V )R′((1− s)β/2)∥∥ ≤ O(1) λ−1+α s−(1−α)/2 (1− s)−α(ñ−1)/2.

(5.49)
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We combine the estimates (5.46), (5.47), and (5.49) to obtain∥∥R(sβ)Q (λV )QI, (V )R′((1− s)β)∥∥1 ≤ O(1)λ−1+α s−1+α/2 (1− s)−α(ñ−1)/2,

(5.50)

which is the first term in the bound (5.34).
In order to bound the second termR(sβ)QI, (V )Q (λ′V )R′((1 − s)β) in

−F(λ, λ′, s), repeat this procedure, but use the adjoint bounds. This yields the esti-
mate∥∥R(sβ)QI, (V )Q (λ′V )R′((1− s)β)∥∥1

≤ O(1)(λ′)−1+α s−α(ñ−1)/2(1− s)−1+α/2 . (5.51)

Adding (5.50) and (5.51) completes the proof of the desired estimate (5.34).
We now establish statement (ii). Let 0< s < s′ < 1. Using the bound (5.1), we

infer that there is a constantM such that, forλ ∈ [0,1], the heat kernele−sβH (λV ) is

bounded in norm byMsβ . Therefore
∥∥∥e−sβH (λV ) − e−s′βH (λV )∥∥∥ ≤ 2Mβ . We can also

bound the difference

e−sβH (λV ) − e−s′βH (λV ) =
(
I − e−(s′−s)βH (λV )

)
e−sβH (λV ), (5.52)

using the fundamental theorem of calculus, giving∥∥∥e−sβH (λV ) − e−s′βH (λV )∥∥∥ ≤ Mβ |s′ − s|/s.
Combining these two bounds on the difference, we infer that there is a new constant
M > 1 such that for any 0< ε′ ≤ 1,∥∥∥e−sβH (λV ) − e−s′βH (λV )∥∥∥ ≤ Mβ

(|s′ − s|/s)ε′ . (5.53)

The same bounds hold withH (λV ) replaced byH (λ′V ). To simplify notation, let
us denoteH = H (λV ), H ′ = H (λ

′V ), Q = Q (λV ), Q′ = Q (λ
′V ), and

QI = QI, (V ). Now write the difference

F
β
 (λ, λ

′, s)− Fβ (λ, λ′, s′)

= βe−sβH (
QQI +QI Q′) e−(1−s)βH ′ − βe−s′βH (

QQI +QI Q′) e−(1−s′)βH ′

= β
(
I − e−(s′−s)βH

)
e−sβH/2Fβ/2(λ, λ′, s) e−(1−s)βH ′/2

+ βe−s′βH/2Fβ/2(λ, λ′, s′) e−(1−s′)βH ′/2
(
e−(s′−s)βH ′ − I

)
. (5.54)

From (5.53) and Hölder’s inequality, we obtain for any 0< ε′ ≤ 1,∥∥∥Fβ (λ, λ′, s)− Fβ (λ, λ′, s′)∥∥∥1

≤ βMβ |s′ − s|ε′
(
s−ε′

∥∥∥Fβ/2(λ, λ′, s)∥∥∥
1
+ (1− s′)−ε′

∥∥∥Fβ/2(λ, λ′, s′)∥∥∥
1

)
. (5.55)

Taking the bound (5.34) into account, we conclude in the case 0< s < s′ < 1 that
the maps �→ F

β
 (λ, λ

′, s) is Hölder continuous in trace norm with an exponentε′. A
similar bound holds if 0< s′ < s < 1, but withs ands′ interchanged, completing the
proof of the proposition. "#
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Corollary 5.7. We have the following.

(i) Let η > 0. For any bounded operator A,∫ 1−η

η

TrH
(
AF(λ, λ′, s)

)
ds = TrH

(
A

∫ 1−η

η

F (λ, λ′, s)ds
)
. (5.56)

(ii) Let η > 0. The operators
∫ 1−η
η

F
β
 (λ, λ

′, s)ds converge in trace-norm as

η→ 0, defining
∫ 1

0 F
β
 (λ, λ

′, s)ds. Thus for any bounded A,∫ 1

0
TrH

(
AF(λ, λ′, s)

)
ds = TrH

(
A

∫ 1

0
F(λ, λ′, s)ds

)
. (5.57)

(iii) For A = I , this limit equals the difference quotient,

lim
η→0

∥∥∥∥Dβ(λ, λ′)− ∫ 1−η

η

F
β
 (λ, λ

′, s)ds
∥∥∥∥

1

= 0, (5.58)

and

Dβ(λ, λ′) =
∫ 1

0
F
β
 (λ, λ

′, s)ds. (5.59)

(iv) For any bounded operator A,

TrH
(
ADβ(λ, λ′)

) = ∫ 1

0
TrH

(
AF

β
 (λ, λ

′, s)
)
ds, (5.60)

yielding the estimate ∣∣TrH
(
ADβ(λ, λ′)

)∣∣ ≤ O(λ−1+α
min )‖A‖. (5.61)

Proof. Statement (i) of the corollary follows from the continuity ofFβ (λ, λ
′, s) in s,

namely Proposition 5.5.ii. Statement (ii) of the corollary is a consequence of the es-
timate of Proposition 5.5.i. We now verify (iii). Consider the domainDs × D′

1−s =
e−sH (λV )H × e−(1−s)H (λ′V )H. BothH (λV ) andH (λ′V ) are sesqui-linear forms
on this domain. Furthermore, from Proposition 5.3 we infer that bothH (λV ) =
Q (λV )

2−P andH (λ′V ) = Q (λ′V )2−P on this domain. Therefore, we have the
identity of forms,

H (λV )−H (λ′V ) = Q (λV )2 −Q (λ′V )2
= Q (λV )

(
Q (λV )−Q (λ′V )

)
+ (
Q (λV )−Q (λ′V )

)
Q (λ

′V )
= (

λ− λ′) (
Q (λV )QI, (V )+QI, (V )Q (λ′V )

)
)

(5.62)

onDs × D′
1−s . Consequently, onH × H,

e−sH (λV )
(
H (λV )−H (λ′V )

λ− λ′
)
e−(1−s)H (λ′V ) = −Fβ (λ, λ′, s). (5.63)
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Part (ii) of the corollary asserts that this expression has an integral overs ∈ [η,1− η],
that converges in trace norm asη→ 0. Therefore∫ 1

0
e−sH (λV )

(
H (λ

′V )−H (λV )
λ− λ′

)
e−(1−s)H (λ′V )ds =

∫ 1

0
F
β
 (λ, λ

′, s)ds.

(5.64)

But the left side of this identity is the difference quotientDβ(λ, λ′), so we have identified
theη→ 0 limit. Finally, the same argument proves that

lim
η→0

∥∥∥∥ADβ(λ, λ′)− ∫ 1−η

η

AF
β
 (λ, λ

′, s)ds
∥∥∥∥

1

= 0, (5.65)

and the bounds of statement (iv) then follow from integrating the estimate of Proposition
5.5.i. "#

6. Estimates on Traces

In this section, we estimate certain partition functions. Their proof involves further
cancellations, that are not captured by the estimates studied in the previous section. The
proofs here use the estimates on operators from the previous section, both to justify the
existence of the objects studied here, as well as to estimate the quantities that arise after
exhibiting cancellations in the trace that defines the partition functions.

6.1. Differentiability for λ > 0 . In this section we establish differentiability ofZλV as a
function ofλ. Choose the bounded operatorA in Corollary 5.7.iv to beA = �e−iθJ−iσP .
Then the corollary yields a representation for the difference quotient

δ (λ, λ
′) = ZλV − Zλ

′V
 

λ− λ′ = lim
η→0

∫ 1−η

η

TrH
(
AF

β
 (λ, λ

′, s)
)
ds

=
∫ 1

0
TrH

(
AF

β
 (λ, λ

′, s)
)
ds.

(6.1)

Furthermore, the putative derivative ofZλV also has an integral representation, namely

δ (λ, λ) = lim
η→0

∫ 1−η

η

TrH
(
AF

β
 (λ, λ, s)

)
ds =

∫ 1

0
TrH

(
AF

β
 (λ, λ, s)

)
ds. (6.2)

Although both representations (6.1) and (6.2) are well defined, we have not established
thatδ (λ, λ′) has a limit asλ′ → λ, nor if this limit exists whether it equalsδ (λ, λ). In
this section we find the consequence of the smoothing provided by the specific operator
A in the partition function, This allows us to prove differentiability of the partition
function, and actually its vanishing.

Theorem 6.1. Under the conditions of Theorem 2.1, the mapλ �→ ZλV is a differentiable
function of λ for all λ ∈ (0,1]. In fact, the derivative vanishes, ∂

∂λ
ZλV = δ (λ, λ) = 0.
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Proof. The bounds in the previous section show thatδ (λ, λ
′) is bounded. To establish

the theorem, we show that the difference quotient (6.1) actually converges to zero,

lim
λ′→λ

δ (λ, λ
′) = 0, (6.3)

for λ > 0. A similar argument shows thatδ(λ, λ) = 0.
We claim that for each fixedλ ∈ (0,1], there exists a positive, constantM =

M(β, , λ, V ), not depending onλ′, such that∣∣ TrH
(
AFβ(λ, λ′, s)

) ∣∣ ≤ M |λ− λ′| s−1/2 (1− s)−1/2, (6.4)

wheneverλ′ ∈ (0,1] lies in the neighborhood ofλ defined byBλ = {λ′ : |λ′ −λ| ≤ 1
2λ}.

Let us assume this bound. As a consequence,∣∣∣∣ ∫ 1

0
TrH

(
AFβ(λ, λ′, s)

)
ds

∣∣∣∣ = lim
η→0

∣∣∣∣ ∫ 1−η

η

TrH
(
AFβ(λ, λ′, s)

)
ds

∣∣∣∣
≤ π M |λ− λ′|, (6.5)

for λ, λ′ ∈ (0,1] andλ′ ∈ Bλ. Thus according to the representation (6.1),∣∣ δ (λ, λ′) ∣∣ ≤ πM |λ− λ′|, (6.6)

for λ, λ′ ∈ (0,1] andλ′ ∈ Bλ, and the derivative ofZλV vanishes as claimed.
Thus we have reduced the proof of the theorem to the proof of (6.4), which we

now establish. We use the notation in the proof of Proposition 5.5. Write the density

TrH
(
AF

β
 (λ, λ

′, s)
)

for the difference quotient as

TrH
(
AF

β
 (λ, λ

′, s)
)
= β TrH

(
AR(sβ)QQI R

′((1− s)β))
+ β TrH

(
AR(sβ)QI Q

′ R′((1− s)β)). (6.7)

The operatorA commutes withR and withR′ and it anticommutes withQ,Q′, andQI .
Also, we have seen thatR(sβ)QI andQR′((1− s)β) are both trace class. Therefore
using cyclicity of the trace,

TrH
(
AF

β
 (λ, λ

′, s)
)
= − β TrH

(
AQI R

′((1− s)β)QR(sβ))
+ β TrH

(
AR(sβ)QI Q

′ R′((1− s)β)). (6.8)

The bound (5.5) assures that the range ofR is in the domain of bothQ0 andQI , and
hence in the domain of bothQ andQ′. Thus in the first term, we can writeQ =
Q′ + (

Q−Q′) = Q′ + (
λ− λ′)QI , to yield

TrH
(
AF

β
 (λ, λ

′, s)
)
= − β TrH

(
AR(sβ)QI R

′((1− s)β)Q′)
+ β (

λ− λ′) TrH
(
AQI R

′((1− s)β)QI R(sβ)
)

+ β TrH
(
AR(sβ)QI Q

′ R′((1− s)β))
= − β TrH

(
AR(sβ)QI Q

′ R′((1− s)β))
+ β (

λ− λ′) TrH
(
AQI R

′((1− s)β)QI R(sβ)
)

(6.9)

+ β TrH
(
AR(sβ)QI Q

′ R′((1− s)β))
= β (

λ− λ′) TrH
(
AQI R

′((1− s)β)QI R(sβ)
)

= β (
λ− λ′) TrH

(
AR(sβ/2)QI R

′((1− s)β)QI R(sβ/2)
)
.
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We estimate (6.9) using Hölder’s inequality, obtaining∣∣∣ TrH
(
AF

β
 (λ, λ

′, s)
) ∣∣∣

≤ β |λ− λ′| ‖A‖ ‖R(sβ/4)‖s
∥∥R(sβ/4)QI R′((1− s)β/4)∥∥

× ∥∥R′((1− s)β/4)∥∥1−s
∥∥R′((1− s)β/2)QI R(sβ/2)

∥∥
≤ β |λ− λ′|M(β/4) ∥∥R(sβ/4)QI R′((1− s)β/4)∥∥2

.

(6.10)

The constantM(β/4) in the last term is the constant in (5.3), and the bound onQI
involves the self- adjointness ofQI , R, andR′. From (5.5) we infer that with a new
constantM4 = M4(β, , V ),∣∣∣ TrH

(
AF

β
 (λ, λ

′, s)
) ∣∣∣ ≤ β |λ− λ′|M4 λ

−1 λ′ −1 s−1/2 (1− s)−1/2. (6.11)

On the setBλ, we haveλ′ = λ + (λ′ − λ) ≥ 1
2λ. Thus takingM(β, , λ, V ) =

2β M4(β, , V )λ
−2, we establish (6.4), and complete the proof of the theorem."#

6.2. Hölder Continuity at λ = 0. In Theorem 6.1, we found that the partition function
ZλV is a constant function ofλ for all λ ∈ (0,1]. At theλ = 0 endpoint of the interval,
H (λV ) = H0. If both 0 < φ ≤ π and 0< β, then the heat kernele−βH0 is trace
class, and the partition functionZ0 = Z0

 is well defined. However,ZλV might have a
jump discontinuity atλ = 0, so it may not be the case thatZλV = Z0. It is important
to demonstrate the continuity ofZλV , and we do so by establishing Hölder continuity at
λ = 0 with an exponent depending on the degreeñ = ñ(V ) of the polynomial potential
V .

Theorem 6.2. Assume the hypotheses of Theorem 2.1. Let 0 ≤ α < 2/(ñ − 1). Then
there exists a constantM = M(α, β, , V ) such that the partition function ZλV satisfies∣∣∣ZλV − Z0

∣∣∣ ≤ M λα, for all 0< λ ≤ 1. (6.12)

Corollary 6.3. Under the hypotheses of Theorem 2.1, the functions ZλV are independent
of  and of λ, and

ZλV (τ, θ, φ) = Z0(τ, θ, φ), for all λ ∈ C. (6.13)

Proof. The corollary forλ ∈ [0,1] is an immediate consequence of the theorem.
SubstitutingγV for V , with γ ∈ C, we also have an allowed potential, and also
Z
(λγ )V
 = Z

λ(γV )
 = Z0. So the identityZλV (τ, θ, φ) = Z0(τ, θ, φ) extends to all

λ ∈ C.

The first step in the proof of the theorem is to establish a representation for the
differenceZ0 − ZλV , that is similar to the representation in the previous section for
the difference quotient (5.60), except that it is convergent at theλ = 0 endpoint of the
interval.
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Lemma 6.4. There are constants M1 = M1(j, V ) < ∞ and M2 = M2(j, V )

<∞ such that

I ≤ H (λV )+M2 ≤ M1 (H0 + I )ñ−1 , (6.14)

and for all 0 ≤ α ≤ 1,∥∥∥(H +M2)
α/2 (H0 + I )−α(ñ−1)/2

∥∥∥ ≤ Mα/2
1 . (6.15)

Proof. Write H (λV ) = H0 + λ2QI, (V )
2 + λ

(
Y + Y ∗

 

)
, whereY + Y ∗

 =
{Q0,QI, }. Sinceñ ≥ 2, the upper bound (6.14) holds trivially forλ = 0. The bound of
Lemma 5.6.i ensures thatQ2

I, ≤ M3(H0+ I )ñ−1. Finally, as a consequence of Lemma

5.6.ii, the termY +Y ∗
 is bounded from above byM3(H0+I )ñ−1. Taken together, these

bounds establish (6.14). We chooseM2 sufficiently large so thatI ≤ H (λV ) +M2.
The lemma then follows from the interpolation inequality(H +M2)

α ≤ Mα
1 (H0 +

I )α(ñ−1), valid for 0≤ α ≤ 1.
For s ∈ (0,1), define the operator-valued function

f
β
 (λ, s) = e−sβH (λV ) (H0 −H (λV )) e−(1−s)βH0, for s ∈ (0,1). (6.16)

Lemma 6.5. Under the hypotheses of the theorem, and for s ∈ (0,1),
(i) Both e−sβH (λV ) H0 e

−(1−s)βH0 and e−sβH (λV ) H (λV ) e−(1−s)βH0 are trace
class.

(ii) There exists a constant M6 = M6(β, , V ), such that the function f β (λ, s) has a
trace-norm bounded by∥∥∥f β (λ, s)∥∥∥1

≤ M6 s
−1+1/2(ñ−1) (1− s)−1/2. (6.17)

(iii) The map s �→ f
β
 (λ, s) is continuous in the trace-norm topology.

(iv) The integral of f β exists, and for any bounded linear transformation A,∫ 1

0
TrH

(
Af

β
 (λ, s)

)
ds = lim

η→0

∫ 1−η

η

TrH
(
Af

β
 (λ, s)

)
ds

= TrH
(

lim
η→0

∫ 1−η

η

A f
β
 (λ, s)ds

)
= TrH

(∫ 1

0
Af

β
 (λ, s)ds

)
.

(6.18)

(v) The difference ZλV − Z0 has the representation,

ZλV − Z0 = β
∫ 1

0
TrH

(
Af

β
 (λ, s)

)
ds, (6.19)

where A = � e−iθJ−iσP .
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Proof. Write∥∥∥e−sβH H0 e
−(1−s)βH0

∥∥∥
1
≤

∥∥∥e−sβH /2∥∥∥
s−1

∥∥∥e−sβH /2H0 e
−(1−s)βH0/2

∥∥∥
×

∥∥∥e−(1−s)βH0/2
∥∥∥
(1−s)−1

. (6.20)

Hence using (5.3) and also (5.5), we conclude that there is a constantM6 = M6(β, , V )

such that ∥∥∥e−sβH H0 e
−(1−s)βH0

∥∥∥
1
≤ M6 s

−1/2 (1− s)−1/2, (6.21)

soe−sβH H0 e
−(1−s)βH0 is trace class.

With a possibly larger constantM6(β, , V ), we also have the bound∥∥∥e−sβH H e−(1−s)βH0

∥∥∥
1
≤

∥∥∥e−sβH /2∥∥∥
s−1

∥∥∥e−sβH /2 (H +M2)
1−1/2(ñ−1)

∥∥∥
×

∥∥∥(H +M2)
1/2(ñ−1) (H0 + I )−1/2

∥∥∥
×

∥∥∥(H0 + I )1/2 e−(1−s)βH0/2
∥∥∥ ∥∥∥e−βH0/2

∥∥∥1−s

≤ M6 s
−1+1/2(ñ−1) (1− s)−1/2, (6.22)

where we use the bound of Lemma 6.4 to bound the third term of (6.22), as well as (5.3)
to estimate the product of the first and last terms. This proves thate−sβH H e−(1−s)βH0

is trace class. As̃n ≥ 2, the two bounds (6.21) and (6.22) taken together yield the proof
of (i–ii).

Let us use the notationR(s) = e−sβH (λV ) andR0(s) = e−sβH0. In order to establish
(iii), take s < s′ and consider the difference∥∥∥f β (λ, s)− f β (λ, s′)∥∥∥1

≤ ∥∥(
R(s)− R(s′)) (H0 −H )R0(1− s)∥∥1

+ ∥∥R(s′) (H0 −H )
(
R0(1− s)− R0(1− s′))∥∥1

= ∥∥((
I − R(s′ − s)) R(s/2)) R(s/2) (H0 −H )R0(1− s)∥∥1 (6.23)

+ ∥∥R(s′) (H0 −H ) R0((1− s′)/2) (
R0((1− s′)/2) (R0(s

′ − s)− I))∥∥1.

We bound this using Hölder’s inequality by∥∥∥f β (λ, s)− f β (λ, s′)∥∥∥1

≤ ∥∥(
I − R(s′ − s)) R(s/2)∥∥ ‖R(s/2) (H0 −H )R0((1− s)/2)‖1

× ‖R0((1− s)/2)‖
+ ∥∥R(s′/2)∥∥ ∥∥R(s′/2) (H0 −H ) R0((1− s′)/2)∥∥1

× ∥∥R0((1− s′)/2) (R0(s
′ − s)− I)∥∥

≤ ∥∥(
I − R(s′ − s)) R(s/2)∥∥ ‖R0((1− s)/2)‖

∥∥∥f β/2 (λ, s)

∥∥∥
1

(6.24)

+ ∥∥(
I − R0(s

′ − s)) R0((1− s′)/2)∥∥ ∥∥R(s′/2)∥∥ ∥∥∥f β/2 (λ, s′)
∥∥∥

1
.
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Use the bound (5.53), with 0< ε′ < 1
2(ñ−1) , as well as Lemma 6.5.ii, to obtain with a

new constantM6 = M6(β, , V ),∥∥∥f β (λ, s)− f β (λ, s′)∥∥∥1
≤ M6

∣∣ s′ − s ∣∣ε′ s−1+1/2(ñ−1)−ε′ (1− s)−1/2

+M6
∣∣ s′ − s ∣∣ε′ (s′)−1+1/2(ñ−1) (1− s′)−1/2−ε′ .

(6.25)

This establishes continuity. The proof of (iv) follows the proof of Corollary 5.7, and we
omit the details. TakingA = �e−iθJ−iσP , and observing that

∂

∂s

(
e−sβH (λV )e−(1−s)βH0

)
= f β (λ, s)

yields (v). This completes the proof of the lemma."#
Lemma 6.6. Assume the hypotheses of Theorem 2.1, take A = �e−iθJ−iσP , and let
s ∈ (0,1).
(i) We have the identity

TrH
(
Af

β
 (λ, s)

)
= −λ2TrH

(
Ae−(1−s)βH0/2QI, (V ) e

−sβH (λV ) QI, (V ) e−(1−s)βH0/2
)
.

(6.26)

(ii) There exists a constantM7 = M7(β, , V ) such that for all α ∈ [0,1/(ñ− 1)],∣∣∣ TrH
(
Af

β
 (λ, s)

) ∣∣∣ ≤ M7 λ
2α s−1+α (1− s)−α(ñ−1). (6.27)

Proof. Part (i) of the lemma is a consequence of the fact that bothe−sβH (λV ) and
e−(1−s)H0 are trace class. Furthermore, the bound±P ≤ H0 along with Proposition 5.3
establishing a similar upper bound withH , shows thate−sβH (λV ) P e−(1−s)H0 is trace
class. We therefore rewriteH0 −H (λV ) in f β (λ, s) as

H0 −H (λV ) = H0 + P −H (λV )− P
= Q2

0 −Q (λV )2 = Q (λV ) (Q0 −Q (λV ))
+ (Q0 −Q (λV ))Q0.

Thus

f
β
 λ, s)

= e−sβH (λV ) (Q (λV ) (Q0 −Q (λV ))+ (Q0 −Q (λV ))Q0) e
−(1−s)H0

= −λ e−sβH (λV ) (
Q (λV )QI, (V ) + QI, (V )Q0

)
e−(1−s)H0. (6.28)

Furthermore, in the first termQ (λV ) commutes with the heat kernel mollifier on
the left, so the above methods showe−sβH (λV ) Q (λV )QI, (V ) e−(1−s)H0 is trace
class. Similarly,Q0 commutes with the mollifier on the right, so the second term is
also trace class. Consider the first term. The operatore−sβH (λV )/2Q (λV ) is bounded,
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the operatore−sβH (λV )/2QI, (V ) e−(1−s)H0 is trace class, andA anti-commutes with
e−sβH (λV )/2Q (λV ). Thus using cyclicity (5.9) one can write,

− λTrH
(
Ae−sβH (λV ) Q (λV )QI, (V ) e−(1−s)H0

)
= − λTrH

(
Ae−sβH (λV )/2Q (λV ) e−sβH (λV )/2QI, (V ) e−(1−s)H0

)
= λTrH

(
Ae−sβH (λV )/2QI, (V ) e−(1−s)H0e−sβH (λV )/2Q (λV )

)
= λTrH

(
Ae−sβH (λV )/2QI, (V ) e−(1−s)H0Q (λV ) e

−sβH (λV )/2
)

= λTrH
(
Ae−sβH (λV )/2QI, (V ) e−(1−s)H0

(
Q0 + λQI, (V )

)
e−sβH (λV )/2

)
= λTrH

(
Ae−sβH (λV )/2QI, (V )Q0 e

−(1−s)H0 e−sβH (λV )/2
)

+ λ2 TrH
(
Ae−sβH (λV )/2QI, (V ) e−(1−s)H0QI, (V ) e

−sβH (λV )/2
)

= λTrH
(
Ae−sβH (λV ) QI, (V )Q0 e

−(1−s)H0
)

+ λ2 TrH
(
Ae−sβH (λV )/2QI, (V ) e−(1−s)H0QI, (V ) e

−sβH (λV )/2
)
. (6.29)

On the other hand, since each term in (6.28) is trace class, we have

TrH
(
Af

β
 (λ, s)

)
= − λTrH

(
Ae−sβH (λV ) Q (λV )QI, (V ) e−(1−s)H0

)
− λTrH

(
Ae−sβH (λV ) QI, (V )Q0 e

−(1−s)H0
)
.

(6.30)

Substituting (6.29) into (6.30), we obtain

TrH
(
Af

β
 (λ, s)

)
= −λ2 TrH

(
Ae−sβH (λV )/2QI, (V ) e−(1−s)H0QI, (V ) e

−sβH (λV )/2
)
, (6.31)

which proves (i).
In order to prove (ii), observe that a consequence of Lemma 5.6.iii, withα < (ñ −

1)−1, is the following bound. There is a constantM8 = M8(β, , V ), such that∥∥∥e−sβH (λV )/4QI, (V ) e−(1−s)H0/4
∥∥∥

≤
∥∥∥e−sβH (λV )/4 (H (λV )+M2)

(1−α)/2
∥∥∥

×
∥∥∥(H (λV )+M2)

−(1−α)/2 QI, (V ) (H0 + I )−α(ñ−1)/2
∥∥∥

×
∥∥∥(H0 + I )α(ñ−1)/2e−(1−s)H0/4

∥∥∥
≤ M8 λ

−1+α s−(1−α)/2 (1− s)−α(ñ−1)/2. (6.32)
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As a consequence of the representation (6.26), the fact thatA is unitary, and using (5.8),
we have∣∣∣ TrH

(
Af

β
 (λ, s)

) ∣∣∣
≤ λ2

∣∣∣ TrH
(
Ae−(1−s)βH0/2QI, (V ) e

−sβH (λV ) QI, (V ) e−(1−s)βH0/2
) ∣∣∣

≤ λ2
∥∥∥e−(1−s)βH0/2QI, (V ) e

−sβH (λV ) QI, (V ) e−(1−s)βH0/2
∥∥∥

1

≤ λ2
∥∥∥e−(1−s)βH0/4

∥∥∥
1/(1−s)

∥∥∥e−(1−s)βH0/4QI, (V ) e
−sβH (λV )/4

∥∥∥
×

∥∥∥e−sβH (λV )/2∥∥∥
1/s

∥∥∥e−sβH (λV )/4QI, (V ) e−(1−s)βH0/2
∥∥∥ (6.33)

≤ λ2
∥∥∥e−βH0/4

∥∥∥1−s
1

∥∥∥e−βH (λV )/2∥∥∥s
1

∥∥∥e−sβH (λV )/4QI, (V ) e−(1−s)βH0/4
∥∥∥2
.

We have used Hölder’s inequality with the exponents(1 − s)−1, ∞, s−1, ∞, and the
fact that‖T ‖ = ‖T ∗‖, as well as

∥∥e−(1−s)βH0/4
∥∥ ≤ 1. We use the bound (5.3), along

with (6.32), to complete the proof of (6.27)."#
Proof of Theorem 6.2. Bound the difference

∣∣ ZλV − Z0
∣∣ by using the representation of

Lemma 6.5.v, and the bound of Lemma 6.6.ii. Integrating this bound, we obtain for any
α ∈ (0, (ñ− 1)−1),∣∣∣ ZλV − Z0

∣∣∣ ≤ β ∫ 1

0

∣∣∣ TrH
(
Af

β
 (λ, s)

) ∣∣∣ds
≤ βM7�(α) �(1− α(ñ− 1)) �(1− α(ñ− 2))−1 λ2α.

(6.34)

The parameter 2α in the bound (6.34) becomesα in the bound (6.12). Thus we obtain
Hölder continuity with any Hölder exponent strictly less than 2/(ñ− 1), and the proof
of the theorem is complete."#

Proof of Theorem 2.1. The bound (5.4), along with Proposition 5.1, ensures that the limit
of partition functions limj→∞ ZλV actually equalsZλV . There is no question about the
existence or the numerical value of the limit: Theorem 6.1 ensures that the functionZλV 
is constant inλ for λ > 0, and Theorem 6.2 ensures thatZλV equals the same function
atλ = 0. SinceZ0 is -independent, thereforeZλV is also -independent. As a result,
not only do the differentiability and continutity ofZλV also hold forZλV , but ZλV is
alsoλ-independent forλ ∈ [0,1]. So we have established Theorem 2.1 and the first
statement in Corollary 2.2.

7. Analyticity

In the previous section, we saw thatZV (τ, θ, φ) = ZV (τ, θ, φ) = Z0(τ, θ, φ). In the
next section we calculateZ0(τ, θ, φ) and find that it is holomorphic for allτ ∈ H and
all θ ∈ C. Furthermore, it actually extends to a holomorphic function ofφ. (There is
an independent way to verify thatZV (τ, θ, φ) is holomorphic usinga priori estimates.
This analyticity is in a smaller domain, but a - independent domain.)
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Proposition 7.1. Assume QH, EL, and TR, with a fixed potential V . Then for fixed real θ
andφ, the partition function ZV (τ, θ, φ) is holomorphic in τ for all τ ∈ H. Furthermore,
for fixed τ ∈ H and fixed φ ∈ R, the function ZV (τ, θ, φ) extends analytically in θ to a
strip | �(θ) | < R, where R = R(τ).

LetA = �e−iθJ−iσP . One can express the partition functionZV as

ZV (τ, θ, φ) = TrH
(
Ae−βH

)
= TrH

(
�e−iθJ−iτ�(H−P)/2+iτ�(H+P)/2)

= TrH
(
�e−iθJ−iτ�

(
Q2/2−P )+iτ�Q2/2

)
,

(7.1)

whereτ denotes the complex conjugate ofτ . We have a representation similar to (7.1)
for the approximating family of partition functions,

ZV (τ, θ, φ) = TrH
(
Ae−βH 

)
= TrH(�e−iθJ−iτ�

(
Q2
 /2−P

)+iτ�Q2
 /2). (7.2)

Lemma 7.2. The approximating partition functions ZV (σ, β, θ, φ) are holomorphic in
the following senses:

(i) Fix σ ∈ R, θ ∈ R, and φ ∈ (0, π ]. Then ZV (σ, β, θ, φ) defined for β > 0 is the
boundary value of a holomorphic function of β extending to iβ ∈ H.

(ii) Fix iβ ∈ H, θ ∈ R, and φ ∈ (0, π ]. Then ZV (σ, β, θ, φ) extends analytically in σ
into a strip around the real σ axis whose width is independent of  .

(iii) Fix σ ∈ R, iβ ∈ H, and φ ∈ (0, π ]. Then ZV (σ, β, θ, φ) extends holomorphically
in θ to a strip around the real θ axis, whose width is independent of  .

Proof. Express the partition functionZV in terms of the real variables,ZV =
ZV (σ, β, θ, φ) = TrH

(
�e−iθJ−iσP−βHj

)
. The uniform trace bound (5.3) ensures that

ZV extends to a holomorphic function ofβ in the right half-plane. In order to establish
part (ii), we use (5.21), combined with Lemma 5.2. Finally, to establish part (iii) of the
lemma, we observe thatJ , P , andH are mutually commuting. Furthermore we use a
bound onJ in terms of|P |. In fact, using the explicit form of these operators, see [4],
we conclude that for fixed 0< φ there is a constantM3 <∞ such that

±J ≤ M3 |P |. (7.3)

It then follows from (5.21) that for constantsM1 andM2, independent of ,

±J ≤ M3 (M1H +M2) . (7.4)

We then apply Lemma 5.2 withθ replacingσ and J replacingP , to conclude that
ZλV (τ, θ, φ) is real analytic inθ . The constantsM1,M2, andM3 do not depend on 
, so there is a strip of uniform width about the realθ axis for whichZλV is uniformly
bounded and holomorphic."#
Lemma 7.3. The approximate partition functions ZV (σ, β, θ, φ) satisfy the Cauchy–
Riemann identity

∂ZV 
∂σ

+ i ∂Z
V
 

∂β
= 0, (7.5)

for τ ∈ H. Therefore ZV is holomorphic for τ ∈ H.
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Proof. By Lemma 7.2, the derivative ofZλV (σ, β, θ, φ) with respect toβ andσ exist.
Differentiating the representation (7.2), and using the identity (4.14) yields

∂ZV 
∂σ

+ i ∂Z
V

∂β
= −i TrH

(
A

(
Hj + P

)
e−βHj

)
= −i TrH

(
AQ2

 e
−βH 

)
. (7.6)

Proposition 5.1 ensures thatQ (H +M2)
−1/2 is bounded, at least if we chooseM2

sufficiently large soI ≤ H +M2. But (5.3) ensures thatQ e−βH /2 = e−βH /2Q 
is also bounded and trace class. As a consequence, we use cyclicity of the trace and
AQ = −Q A to give

TrH
(
AQ2

 e
−βH 

)
= TrH

(
A

(
e−βH /2Q 

) (
Q e

−βHj /2
))

= −TrH
((
e−βH /2Q 

)
A

(
Q e

−βH /2
))

= −TrH
(
AQ e

−βH /2Q e−βH /2
)

= −TrH
(
AQ2

 e
−βH 

)
= 0,

(7.7)

completing the proof of analyticity inτ ∈ H. "#

8. Evaluation

We verify the representation for the elliptic genus in the case that the potentialV is zero.

Proposition 8.1. Choose &i ∈ (0, 1
2] for 1 ≤ i ≤ n. Take V = 0 and assume TR and

NC. Then the partition function Z0 is given by (2.4).

Proof. Define

&
f
i (k) =

{
&i, if 0 < k
1−&i, if k < 0

, (8.1)

and the functions

γ b±,i (±k) = e∓iθ&i−β|k|, and γ f±,i (±k) = e∓iθ&
f
i (±k)−β|k|. (8.2)

The momenta range over the following lattices,

Kbi = {k : �k ∈ 2πZ −&iφ}, and Kf±,i = {k : �k ∈ 2πZ −&fi (±k)φ}. (8.3)

We require that 0< φ ≤ 2π and 0< &i, 1 − &1 < 1, so zero is not an allowed
momentum,

0 �∈ Kbi , Kf+,i , Kf−,i . (8.4)

In caseV = 0, the partition function factors into a product of a fermionic free-field
part and a bosonic free-field part. We calculated the free bosonic and fermionic partition
functions in Theorems 2.2.1 and 5.4.1 of [4], yielding

Z0 = yĉ/2
n∏
i=i

 ∏
k∈Kbi

∏
k′∈Kf+,i

∏
k′′∈Kf−,i

(
1− γ f+,i (k′)

) (
1− γ f−,i (−k′′)

)
|1− γ b+,i (k)|2

 . (8.5)
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The overall factoryĉ/2 arises from the normalization constantĉ/2 in (1.13).
Split each product into terms indexed byn ∈ Z, and separate the terms with positive,

negative, and zeron. Note thatγ b+,i (k) = γ b−,i (−k)∗. (Theγ f±,i satisfy such a relation

only when&i = 1/2.) Fork =
(
2πn− χb,f±,i

)
/�, andn ∈ Z the functionsγ b, f±,i (±k)

take the following values:

γ b+,i (k) γ b−,i (−k) γ
f
+,i (k) γ

f
−,i (−k)

n = 0 (z/y)&i (yz)&i (z/y)1−&i (yz)&i

n > 0 qn (1/yz)&i qn (y/z)&i qn (1/yz)&i qn (y/z)1−&i

n < 0 q |n| (z/y)&i q |n| (yz)&i q |n| (z/y)1−&i q |n| (yz)&i

Therefore (8.5) equals the product of ratios made from these 12 terms, with factors 1−γ f
in the numerator and factors 1− γ b in the denominator. Group the terms depending on
q near each other, to obtain

Z0 = yĉ/2
n∏
i=i

{
(1− (z/y)1−&i )(1− (yz)&i )
(1− (z/y)&i )(1− (yz)&i ) (8.6)

×
∞∏
n=1

(
1− qn(1/yz)&i ) (

1− qn(yz)&i ) (
1− qn(z/y)1−&i ) (

1− qn(y/z)1−&i )(
1− qn(1/yz)&i ) (

1− qn(yz)&i ) (
1− qn(z/y)&i ) (

1− qn(y/z)&i )
}
.

Using the definition (1.16), the product (8.6) is

Z0 = zĉ/2
n∏
i=i

ϑ1(−τ ,&i (φτ + θ)) ϑ1(τ, (1−&i) (φτ − θ))
ϑ1(−τ ,&i (φτ + θ)) ϑ1(τ,&i (φτ − θ))

= zĉ/2
n∏
i=i

ϑ1(τ, (1−&i) (θ − φτ))
ϑ1(τ,&i (θ − φτ)) .

(8.7)

The theta functions depending onτ occur in both the numerator and the denominator. We
also use here the fact that the functionϑ1 is odd in the second variable. This completes
the evaluation ofZ0, and it also completes the proof of Corollary 2.2."#
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