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Abstract: We study the elliptic genus (a partition function) in certain interacting, twist
guantum field theories. Without twists, these theories léve 2 supersymmetry. The
twists provide a regularization, and also partially break the supersymmetry. In spite of the
regularization, one can establish a homotopy of the elliptic genus in a coupling param-
eter. Our construction relies @priori estimates and other methods from constructive
guantum field theory; this mathematical underpinning allows us to justify evaluating the
elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed
formula for the elliptic genus in terms of classical theta functions. As a consequence,
the elliptic genus has a hiddeti. (2, Z) symmetry characteristic of conformal theory,
even though the underlying theory is not conformal.

1. Introduction

We study coupled complex bosonic and fermionic quantum fields on a two-dimensional
space-time cylindes® x R, wheres?! denotes a circle of length The equations are
determined by a holomorphic polynomialzirvariables called the superpotential,

V:C"— C. (1.2)
We denote the degree of this polynomial by
n = degre€V), and we assume > 2. (1.2)
The complex scalar fieldsand the Dirac fieldr haver and 2 components respectively,

¢ ={¢i}, where 1<i <n, andy = {yy;}, where 1<a <2, 1<i<n.
(1.3)
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Inthe literature one finds these equations called “Wess—Zumino equations” or sometimes
“Landau—Ginzburg equations”. For cublit the equations reduce to the coupling of a
non-linear boson field to the Dirac field by a Yukawa interaction. Hence one occasionally
also refers to the equations arising from gené&rals “generalized Yukawa” equations.
In [15,12] we established the existence of solutions to the Wess—Zumino equations for
massive fields. Recently we extended these results by proving the existence of solutions
for the equations couplingassless, multicomponent, twist fields. The word “twist” refers
to the fact that the fields are multi-valued; translation about the spatial circle results in
each component of the field being multiplied by a phase. This phase is proportional to
a real parametep that we choose in the interval € (0, 2], and the periodic case (no
twist) corresponds to the limiting valye= 0. The operators in the field theory act on a
Fock—Hilbert spac@{ over the circle, with domains and other properties of the operators
depending ow. For details of these definitions and results see [4,10,11].

We study a subset of polynomialswith properties detailed in Sect. 1.1. For these
examples, the HamiltoniaH = H (V) is self-adjoint, it is bounded from below, and
the heat kernet—## has a trace for alp > 0. This semigroup commutes with the
translation group generated by the momentum opemtdrhere is also &/ (1) group
U(0) = 97 of “twist” symmetries ofH , where the generator = J (V) depends ofv,

see Sect. 1.1. Denote the fermion number operatay byand letl” = (—I)Nf denote
aZp-grading. In our examples, all four operatdiis P, J , andI" are self-adjoint and
mutually commute. Hence the operatbr= I' ¢/~ ? is unitary, and the operator
Ae PH =T oi0/—icP=BH nag g trace for ajp > 0.

The elliptic genus is the partition function

3V = Try (e 0/t P=pil), (1.4)

In a seminal paper [21], Witten suggested that one could calculate the elliptic genus of
these examples in closed form. He gave a proposed formula (for0) based on an
argument thag”" should be independent of a parametgand an “evaluation” o for

V = 0. Kawai, Yamada, and Yang [17] elaborated on the algebraic aspects Witten’s work
and made contact with related proposals of Vafa [19]. From a mathematical point of view,
these insights are not definitive; the representation (1.4) is ill-defined ifibeth0 and

¢ = 0,ase—#H does not have a trace, and the evaluation is only suggestive. Furthermore,
establishing the existence and continuity3éf requires extensive analysis, beyond the
scope of earlier work.

We introduce a regularizedl” , with two regularizing parameters. The first regular-
ization mollifies the zero-frequency modes, and enters through the non-zero twisting
parameterp, as explained in Sect. 1.1. The second regularization mollifies the high-
frequency modes. We denote the regularization parametey, land we discuss it in
detail in Sect. 5 when we give an explicit expression for the supercharge as a densely
defined sesqui-linear form on the Hilbert sp&¢eThe regularized supercharges deter-
mine self- adjoint operators. The elliptic genus depends on the paragmeted has a
regular limitasp — 0. (In fact, the genus continues holomorphically tajaf C.) The
genus does not depend on the high-frequency mollifier

Our goal in this paper is to find and exploit infra-red and ultra- violet regularizations
that yield all the following:

e a self-adjoint HamiltoniarH that is bounded from below, with a trace class heat
kernel,
o the two-parameter group of Lie symmetriesfbfgenerated by and P, and
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o a sufficient number of invariant supercharges to study and to compute the elliptic
genus.

The method that we use in this paper has many advantages. We use twists to provide
the infra-red regularization, and a ultra-violet regularization with the propersoof
decrease at infinity to provide a non-local cutoff in the Hamiltonian. This regularized
Hamiltonian has a form that allows us to establish stability and self-adjointness, as
well as the existence of a trace for the heat kernel. This trace is uniform in the ultra-
violet regularization parametex, but diverges as the twist parameter— 0. This
regularization leaves us with half the number of translation- invariant supercharges that
one expects in a twist-free theory. These supercharges also commute with

Onthe other hand, more straightforward regularizations cause difficulty in at least one
of these areas, either producing a heat kernel with continuous spectrum, destroying the
¢'?7 symmetry that one needs to study the elliptic genus, breaking all supersymmetries,
making it impractical to establish stability, or producing error terms in the supersym-
metry algebra that elude estimation. For example, introducing a bosonic mass, without
a corresponding fermionic mass, provides an infra-red regularization compatible with a
trace-class heat kernel and withbsymmetry; but all supersymmetries will be broken. We
used this method in [9] to study the quantum-mechanics version of the present problem.
As aresult, the mathematical analysis became quite lengthy — even in the case of a finite
number of degrees of freedom. On the other hand, introducing a mass in both the boson
and the fermion destroys thesymmetry of the Hamiltonian, as well as of all super-
charges, requiring the analysis of o ther types of error estimates. Furthermore, a sharp
upper momentum cutoff in the interaction produces non-localities that defy estimation.

One new ingredient in our program is to generalize the framework of constructive
qguantum field theory to cover twist fields. We carry this out in more detail in [10]. A
second new ingredient involves identifying and studying cancellations that occur in the
geometric invariants we study, and we give the details of these cancellations. We begin in
Sect. 5 with operator estimates, that justify representations of the invariants by invariants
of a sequence of approximating problems. Related estimates show that we can exhibit
cancellations in the difference quotients for the approximating problems. In order to
estimate these cancellations, we pass from operator estimates to the study of traces in
Sect. 6 and Sect. 7.

Twisting partially breaks supersymmetry, as explained in detail in [11]. Half the
supercharges are translation and twist invariant, while the other half of the supercharges
are not. The elliptic genus can be written as a function of the invariant charges. We
restrict the @-real twisting angles to lie on a line iR%", parameterized by one angle
¢. Doing this yields one invariant supercharge that we defigtand which commutes
both with translations and the twist group. This supercharge satigfies H + P. A
second supercharge (one that formally existspfes 0) is neither translation nor twist
invariant. But it is well-behaved in the sense that we can estimate the error terms in the
supersymmetry algebra, and we use one of these estimates in thig paper.

Inthe end, we obtain the representation of the elliptic genus in terms of theta functions.
The partition function then satisfies certain properties under transformations defined by

1 Other estimates on the error terms in the supersymmetry algebra play a role if one wants to identify the
limiting quantum field theory with full supersymmetry in the limit as the twists are removed. The elliptic
genus turns out to be the boundary value of an entire functignef. In particular, the limitp — 0 exists.

Since the Hilbert space and operators we study deperd ae define a limit of field theories as a limit of
expectation values. With such a limit, as long as we keep a well-behaved, non-zero potential, we recover a
standard quantum field theory @s— 0.
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the modular grouggL(2, Z), acting on the complex space-time coordinatdefined
below. At first this seems surprising, as the theta functions and conformal symmetry
are generally associated with zero mass fields or with conformal field theory. For this
reason, we describe thiH.(2, Z) symmetry as didden aspect of these Wess—Zumino
models.

Our results here build on work of Witten [21] and Connes [1], combining these
ideas with results from our theory of twist quantum fields [4,10] and our work in [6].
The elliptic genus is an index invariant, and as explained in Sect. IX of [6], it fits
into the general framework of equivariant, non-commutative geometry (entire cyclic
cohomology), characterized by the Dirac opergam loop space. However, the elliptic
genus is only one such invariant, from a whole family of invariants, that result from the
JLO-cocycle [13]. Therefore we suggest that it may be possible, within the framework of
the Wess—Zumino examples that we study here, to find closed form expressions for some
other invariants given in [6]. We formulated various representations for such invariants
in [7,9], and these might be useful in computation.

We prove here the representation for the elliptic geRtis Our proof relies on a
series ofapriori estimates and other methods from constructive quantum field theory. In
particular, we stud$”" , wherex denotes a real parameter, and establish differentiability
of 3*V in A for A > 0, and eventually tha3*" is a constant function of. Another key
estimate is to show thg*" does not jump ak = 0. In fact,3*" is a priori Holder
continuous ak = 0. We obtain any positive Holder exponent< 2/(7 — 1), namely
there is a constanf = M(«, V, A) such that

3 -3 = o, (1.5)

for A € [0, 1]. For potentials of large degree this exponent is small, but strictly positive.
These two results combine with the vanishing of the derivative, to show3tHais
actually a constant function af € [0, 1]. We then comput@" by evaluating3®.

1.1. Assumptions. Let us give more details. The real-time bosonic figtd = {¢rT.i}
hasn components designategkr ;, where 1< i < n. The corresponding real-time
fermionic fieldsyrt = {YRT..;} has 2 components labeled lay i with i as before and

1 < «a < 2. Allthese fields are complex, and so givert®ist constants2 = {Qf’, 9;5,[}'
there is a one-parameter groUpo) such that

- ob b
U©@)grriU®) =% prri. and U@)YrraU®O)" = e"Yrrai.  (1.6)
Also, the momentum operator implements spatial translations,
io

io P —ioP
e Rt i(x, 1)e =¢rT,i(x —0,1),

and
P YRT 0 i(x, e P = Yrrgi(x —0,1). (1.7)

These properties uniquely determine each genesadmd P, up to an additive constant;
we choose these constants in tieemalization condition NC below.

Atwist field has the additional property that these two groups are related. Translation
around the circle results in multiplying each component of the field by a phase. Thus

there are B-independent twisting angles = {X}’, x(ﬁi} such that

b b
@RrTi (X + €, 1) = eXi @rr,i(x, 1), and YRT,q,i (x + £, 1) = e*ei Yrri(x,1). (1.8)
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Our superpotentidt is a holomorphic polynomial frorf” toC, and it determines the
coupling ofprt with yrT. Let V; denote the directional derivative &f, namelyV; (z) =
aV (z)/9z;. We study a holomorphic polynomial superpotentialvith two other basic
properties: the potential guasi-homogeneous (QH) and the potential satisfies certain
élipticbounds(EL). Furthermore, we assume that the twist constants and twisting angles
satisfy certainwist relations (TR). Finally we assume certaimormalization conditions
(NC). We now briefly summarize these four hypotheses:

QH (Quasi-homogenity) The superpotential functiol: C* + C is a holomorphic,
quasi-homogeneous polynomial of degreat least two. This means that there are
constants?; calledquasi-homogeneous weights, such that O< Q; < % and

n

Vo =Y en @, (L.9)

i=1 9zi

EL (Elliptic Property) Given 0 < ¢, there exists¥ < oo such that the functioly
satisfies

109V <e|aVI2P+ M, and [z2+|V|<M (|aV|2 4 1) . (1.10)
Hered*V denotes any multi-derivative 8f, while |z| denotes the magnitude gfand
1dV|? =Y"1_, 18V /dz;|? is the squared magnitude of the gradienvof
TR (Twist Relations) Define the 3 twist constants2 in J as functions of the:
guasi-homogeneous weights ,

D=9, Q,=9. adQ},=1-. (1.11)
Choose the Btwisting anglesy to be proportional to the twist constaries namely
W=, xli=u¢. andxd,=a-)¢, (1.12)
whereg is a single twisting parameter that we take to lie in the inte(@air].

NC (Normalization Conditions) Choose the additive constants in the generafors
and P so the Fock ground staf@y,c is an eigenvector with the following eigenvaldes

1,
PQyac =0, and JQyac = _EC Quac,

where

n n
c=Y(ef-el)=2a-2q2. (1.13)
i=1 i=1
This ensures that and—J have the same spectrum.

In [10] we establish
Proposition 1.1. Assumethat V isa holomorphic polynomial satisfying EL of Sect. 1.1.

(i) Thereexists a self-adjoint quantum field twist Hamiltonian H (V) that is the norm-
resolvent limit of a sequence of approximating Hamiltonians Hx (V) defined in
Sect. 4.

2 The constant recurs in these problems and is calleddbetral charge. In fact¢ characterizes the weight
of the elliptic genus as a modular function, as pointed out in [21].
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(i) The self-adjoint semi-group e A7) jstrace class for g > O.

(iii) Suppose in addition that V is quasi-homogeneous, and that the twist constants
Q and the twisting angles x satisfy TR. Then the Hamiltonians H, and H both
commute with the two-parameter unitary group ¢'?/ i ? of space translations and

twists, and they also commute with T' = (—1)M” .
We introduce some further notation. Witiz) the imaginary part of, letH = {7 :
0 < J(r)} designate the upper half plane. We use the parameteR, and the strictly
positive parameterg, 6, and¢. We take
o+ip
0
In terms of these parameters, define the variables

e H. (1.14)

T =

2rit

g=e7" so|q| <1, y=¢"*

, so|yl=1, andz=¢*", solz| <1
(1.15)

Consider partition functions as functionsmf¢, and¢, related tag, y, andz as above.
The Jacobi theta function of the first kind (z, 0), defined forr € H, for & € C, with
period 8 int, and with period # in 6, is given by

o0
1 1 1
p1(r,0) = ig? (377 —»?) [[A-gnA-g"nA=q"y™.  (L16)
n=1
This function is odd in the second variable, namgjyz, 0) = —¥1(z, —6). We follow

the standard notation in Sect. 21.3 of Whittaker and Watson [20], with the exceptions
noted above.

2. Main Results

We study the partition function
BAV = Try (Fe—iej—iaP—ﬁH(AV))_ 2.1)

ForV = 0, the heat kernel~#H0 s also trace class, on account of the non-zero twisting
parametep. Given a non-zero potenti® satisfying QH and EL, we associate a family

of potentials.V, wherei € [0, 1], and also a generatdrof symmetry with parameters

Q specified by TW and normalization given by NC. The partition funcfi8rdefined

by A = 0 has an implicit dependence &h brought about through the choice bfWe
devote the remainder of this paper to establishing the following theorem and its corollary.

Theorem 2.1. Assumethepolynomial potential V of degreen > 2 satisfiesQH and EL of
Sect. 1.1. Consider the self-adjoint Hamiltonian H = H (A V), asdefined in Proposition
1.1 for A > 0. Assume that the twist fields satisfy assumptions TR, and that P and J
satisfy NC.

(i) Themap
A 3 (1,0, ¢) (2.2)
isdifferentiablein A for A > 0.
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(i) Choosea sothat0 < o < 2/(n — 1). Thereexistsa constant M = M («, V) such
that for A € [0, 1],

303" | = M. 2.3)

Corollary 2.2. The map (2.2) is constant for 0 < A < 1. The partition function 3"
depends on V only through its weights €2, and it equals

n

3V(x.0,¢) =[]

U1(r, (1 - ) (0 — ¢1))

(2.4)
U1(z, Qi (0 — ¢1))

Remark. Corollary 2.2 shows thad" (, 6, ¢) extends to a holomorphic function for

r €M, 0eC andg eC.lfa,b,c deZ, andad — be = 1, then(i Z) € SL(2, 7).
Let
b 0
e T and ¢ = 2% (2.5)
ct+d ct+d at +b

The analytic continuation of the partition functi@f (z, 6, ¢) obeys the transformation
law

c(0—¢1)?

3V, 0, ¢) = ezm(%)< e >3V(r, 0, ). (2.6)

One obtains limiting values from the representation (2.4) as the parangeterer
g vanish; these limits are not uniform and do not commute. Define the integer-valued
index of the self-adjoint operatap with respect to the grading as the difference in
the dimension of the kernel and the dimension of the cokerngl aé a map from the
+1 eigenspace df to the—1 eigenspace df. Denote this integer by IndexQ).

Corollary 2.3. We have the following limits.

() As¢ tendsto zero, the partition function converges to3

oy i 1-Q)0)
Jimy 3 _E o1(r. 0) 2.7)

As 6 — 0, the partition function convergesto

. 21 01(T, (L — @) ¢7)
vV _ _¢/2 1
Jimy3" =z ,-1211 o1(r, Qipt) (2.:8)

3 The existence of a field theory fgr= 0 requires special analysis. For£ 0, this can be established as
a consequence of the assumption EL ¥orThe field theory is the — 0 limit of the twist field theory, and
the elliptic genus of the limiting theory is the limit (2.7). It agrees with the formula proposed in [17]. In the
case, = 0, the elliptic genus also hasga— 0 limit as long as O< |9| < 2, but this limit is not the genus
of a limiting theory.
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(ii)y For 6 € (0, ), we may take the iterated limit as¢ — 0 and then g — 0 to obtain
the eguivariant, quantum- mechanical index studied in [9],

(e oy SN — 90)6/2)
J'Lno(gl'ino?’ )‘U sin(Q:6/2) 29

(iii) Theinteger-valued index Index-(Q) can be obtained as
_ i i VY _ ; v
Index-(Q) = e!ano <q|s|£>n03 ) o ¢I)|T0 (9'@03 >

—im (iim (iim =¥\ = TT(L _
_(!ITOQITO(;@OB >>_z=l—[1<9’ 1)'

(2.10)

(iv) On the other hand,

60—0 \g—0 q—0\6—0

lim (Iim 3V> = lim <Iim 3V) =1 (2.11)

Examples. For anyn, if V(z) = Y7 zf.‘f, with 2 < k; € Z, thenV satisfies QH and
EL, and

n

1 . ki —2 .
Q= o 0= ; - ,and Index(Q) = i_l_{(k, - 1. (2.12)

Forn =2,withV(z) = z’f + zlz’;, the potential also satisfies QH and EL. In this case,

1 -1 -1 -1
ool g fiml o a-Dle=1
k1 kiko k1ko
and
Index-(Q) = ka(ko — 1) + 1. (2.13)

Remark. The integer-valued index (2.10) is stable under a class of perturbations of
that are not necessarily quasi-homogeneous. Briefly, we requiré thaV; + V,, where

V, satisfies the hypotheses QH and EL above. WWiles a holomorphic polynomial, it

is not necessarily quasi-homogeneous. In place of this, we assume that the perturbation
V2 is small with respect td; in the following sense: given & ¢, there exists a constant

M1 < oo such that for any multi-derivative® of total degreea| > 1,

|0% V2| < €|dVi] + M. (2.14)

3. Supercharge Forms

In this section, we define the supercha@es a densely-defined, symmetric, sesqui-
linear form. In later sections, we consider a family of self-adjoint operadgrshat are
mollifications of Q. The operatorg) , have a norm resolvent limit, showing that the
sesquilinear forn actually defines an unbounded operator. The definitio@ aloes
not require renormalization.
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The Hilbert space of our example is a Fock spice #? ® /. The bosonic Hilbert
spacet” and the fermionic Hilbert spack/ are the symmetric and respectively the
skew-symmetric tensor algebras over the one particle gpakkerek is the direct sum
of 2n- copies ofL2(S1). The free HamiltoniarHy, the momentum operatdt, the total
number operataV = N?+ N/, and twist generataf = J(2) are self-adjoint operators
on?#. HereN? is the total bosonic number operator, and it actgba- H? ® H/ as
N’ @ I, etc. The bosonic time-zero fielg(x), its conjugate fieldr (x) and fermion
time-zero fields/ (x) are operator valued distributions &hH

There is a dense linear subgetc #, obtained by replacing.?(s*) by Cgo(Sl),
and by taking vectors with a finite number of particles. The dorfiggmovides a natural
domain on which to define operators, and then to extend them by closure. Furthermore
the operatorsV, I', Ho, P, ande’?’ all mapD into D.

In addition to defining operators with the domdh we also define sesqui-linear
forms with domairD x D. These are maps from pairs of vector@imo C, that are anti-
linear in the first vector and linear in the second vector. By polarization, each such form
can be expressed as a sum of four diagonal elements, namely as a sum of four expectations
in vectors inD. On the domairD x D, the components of the time-zero fieldgx),

i (x) and ¥ ;i (x), as well as normal-ordered polynomials in these components, are
sesqui-linear forms; see for example [2]. The values of these forms defined in this way are
C° functions ofx. We call thentC *°-sesqui-linear forms with the domainh x D. Unless

we specify otherwise, we use these domains and then extend the resulting operators or
forms by closure. Ultimately our goal is to redefine operators and forms with domains
determined by the range of a heat kernel of the Hamiltonian.

Choose a potential functiol satisfying QH and EL. This potential as a function
of the scalar complex, boson fiejdx) determines the energy density of our system as
follows. Letyr (x) denote our Dirac field. Monomials in the components of the scalar field
@; (x) (orinthe components of the adjoint field, but not simultaneously in the components
of the field and of its adjoint) are normal ordered. Since the boson fields and the Dirac
fields act on different factors in the tensor product, the product of a normal ordered boson
field and a Dirac field is also normal ordered. hedenote a real parameter lying in the
interval[0, 1]. Define the normal ordered densiy(; x) as theC* sesqui-linear form

n

DO x) =Y {iyn () (7 (x) — 0eg (1)) + A2, () V; (9(x))*} , 3.1

j=1
with domainD x D. The adjoint of aC*> sesqui-linear form is also &> sesqui-
linear form. Define the sesqui-linear forB(A; x)* by polarization of the expectations

(£, DO x)* f) = (f, DO x) f)*, for f € D.
Define the supercharge densi(1; x) as the sesqui-linear form

O x) = D(A; x) + D(A; x)™. (3.2)

The integral of these densities ov&t yield supercharges that are densely-defined,
sesqui-linear forms with the domain x D, namely

4 4
D(A):/ D(: x)dx, and Q(A):/ 0(x; x)dx = D(A) + D(V*,  (3.3)
0 0
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whereD(L)* = fo‘z D(; x)* dx. If we also assume the twist assumption TW, then these
forms have the properties for alle [0, 1], all o, and allé,

From =-0mr, €°7on =-0n ",
and
& o =—-om . (3.4)

The supercharge that we den@é€xr), or sometime®) (A V), is the one that we study
most in this paper. DefinBg = D(0) and Q¢ = Q(0), and defineD; andQ; so that

D(\) = Do+ ADy, and Q(A) = Qo+ X2 Q. (3.5)

The supercharg®g extends by closure to a self-adjoint operafly. (This means that
the form obtained by closin@g with the domainD x D uniquely determines a self-
adjoint operator that we also nangk).) This operator is essentially self adjoint on the
domain®D, and also maps this domain into itself. Furtherma®g,commutes with the
operatorP and with the operatoy defined for any®2. The operatoiQo anticommutes

with = (—I)Nf. The square of the supercharge operadlgihas the property
Q3= Ho+ P. (3.6)

As Qo commutes withP, it follows from (3.6) thatQo commutes withHg. Furthermore,
asP < Hp, we have the elementary inequality of forms,

1/2

+Qo < |Qol < v2H, 3.7)

We also require the second component of the supercharge. This is a sesqui-linear form

02(1), defined as the integr{ﬂf 02(); x) dx of the densityQ2(A; x) = Da(A; x) +
D> (%; x)*. Here D2(X; x) is theC*°-sesqui-linear form

n

Da(x) =Y iz, ;) (T (0)* + 0,0, (X)) + APre j () V (p(x)) } e 9/E. (3.8)
j=1

As with the first component of the supercharge,

['O22) = =020 7T, (3.9)
and we have the decomposition

02(0) = 020+ A027, (3.10)

whereQ> 0 and Q2 ; are independent df. The form Q2 o uniquely determines a self-
adjoint operator that we also denote@so.

However, unlike the case of the opera{@ds, the operatoQ» g is neither translation
invariant nor twist invariant. Nevertheless, the squargep is invariant under both
these groups. This square equals

0%0=Ho— P+ ¢R, (3.11)
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where

2 (¢
R=-2% /0 2 (W (1) dox. (3.12)
i=1

Here: - : denotes normal ordering. An explicit representatioéﬁf can be given as a
difference of two terms, each term being a sum of number operators for a subset of the
fermionic modes, see [4]. This ensures, in particular, that

2

whereN denotes the total number operator.

4. Approximating Supercharge Operators

In order to study the properties of the Hamiltonian, we introduce approximating families
of supercharge form@ 4 (1) indexed by a parameter € [0, co], and with the property
Qo(2) = Qo, andQ (1) = Q(1). Let

OA(A) = Qo+201a, and Qoa(l) = Q20+ A0274. (4.1)

In [4] we introduce a family of mollifier functlons” and;c  forthe scalar and Dirac
fields respectively. These mollifiers act by convolutlon W|th a particular mollifier for
each field component. The mollifiers have an indekat specifies amomentum scale for
the mollifier, and each mollifier converges to the Dirac meadaiA — oo. We define
mollified time-zero fields (x) andyra (x) as sesqui-linear forms with components

14 [
i (x) = /0 kA (x = ¥) @i(y)dy, and Vi a(x) = /0 Kl A O =) Vi () dy.
4.2)
We apply the mollifiers only to the fields that occur in the tef@sand Q2 ;. These
terms are the interaction terms and are proportional; tim this way we mollify the

boson and the fermion fields symmetrically.
We construct the mollifiers from a single smooth, positive functi@s follows. Let

-
(14427

where 0< € < ¢(V), and where we choos#V) sufficiently small. We choose far(k)
any smooth function such that

Ksdi(k) = (4.3)

Ksdi(k) < k (k) < k(0) = 1. (4.4)

The lower bound oi (k) by the strictly positive functioRsgi(k) is the property that we

call dow decrease at infinity or sdi, and it ensures thatk) is sufficiently close to being

local, i.e.k (k) = 1. We introduced this sdi property in [14] in order to establish stability

for a purely-bosonic, bi-local interaction. In the supersymmetric case, the mollified
Hamiltonian is bilocal and it is therefore natural to use an sdi mollifier. In [10] we
establish stability based on these ideas. We represent the trace of the heat kernel of an
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approximate Hamiltonian as a functional integral. The sdi property allows us to study a
partition of unity of function space, and to show on each patch that the bi-local bosonic
self-interaction can be bounded by a similar local self-interaction (with a coefficient that
depends on the patch). The method is sufficiently robust that we can also estimate the
non-local contributions from the ferm ionic determinant. We describe this phenomenon
in more detail in Sect. 5.

We define the family of periodic mollifier functions indexed hyby the Fourier
series

1 )
a() =5 > klk/A) e, (4.5)

kezT”Z
where the series far, converge in the sense of distributions. Each ketpék) satisfies
ka(x +4£) = kp(x). (4.6)

Denote bysS the space of *°, periodic functions on the circle. Le}, denote the integral
operatorkp : S — S defined by the integral kernel, (x, y) = «ka(x — y). In other
words,« is the operator of convolution by, (x) on S. Given the usual topology on
these smooth functions, the adjoin;t of the operatok, acts on the dual space of
distributions on the circle, defined kﬁngp) (f) = @(kn f). This adjoint is an integral
operator with the kerndk ) (x, y) = ka(y —x) = ka(x — y).

Consider the spac’ = ¢~/*49*/LS of smooth functions on the circle satisfying the
twist relation f (x + €) = ¢4 f(x). These are the test functions for the components

of the bosonic, time-zero, twist field. Likewise define the spaﬂ{gs: S? andé‘{i =

¢~1A-209v/LS For each\, define operators’ , actingon(S?)’, operators{ , , acting

!/ /
on (S{i) ,and operators{i’,\ acting on<8£i> . To simplify notation we designate the

mollifiers acting on the dual space bf(, etc., without the adjoints, defining them as the
convolution operators with kernels

iQigx/t i(1-$4 /O

Ka(x).
4.7)

K{TA()C)ZK]]:[-,A()C)ZE Ka(x), and K{J’A(x)ze

The kernels satisfy! , (x) = «, (-x), and similarly/cii,A(x) = K({’I-’A(—x). They
satisfy the twist relations

KA+ 0 =k, (0 0) = 0P, (),

)

and
K{i’A(x +40) = e’(l_Q")qs/c{l.,A(x). (4.8)

The operatorszci]’A converge asA — oo to the identity as operators c(nﬁl?’)/, and

i
similarly for K(';I-’A on (SL) . Correspondingly, the kernels converge as distributions
to a Dirac measurg,

Jim K2y () = [Ji_r)T]OOKO{;i’A()C) = §(x). (4.9)
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Also definen families of spatially-dependent kerneis, (x) by the Fourier representa-
tions that converge in the sense of distributions,

. 1 .
Vi A (x) = et A S2)xe/t Z Z IR(k/A)Pe ™ | (4.10)

ke%z
In the sense of distributions,

AIim vi A (X)) =8(x). (4.11)

With these definitions, we establish in [10] that the for@g and Q2 A determine
self-adjoint operators. The operat@y, have the properties

FQA=—0aT, and Q,ef/FoF = Ji0+iol g, (4.12)
for all reald, o. Furthermore the operato@, » satisfy
I'Qop=—-024T. (4.13)
But these operator@, » do not commute with the groug?”/+o?.
The operatoQ 4 satisfies the normal relation of the first component of a supercharge
and a Hamiltoniard,,
Q% = Ha + P. (4.14)

Here the Hamiltoniar, is a perturbation of the free, twist- field Hamiltonidfy =
HE + H{ , and has the (non-local) form

LY ¢
Hp = Hyx(AV) = Ho + Z/o dx/o dy Vi(pa(x)* 2via(x = ) Vi(oa ()
i=1

+ A (Ya+Yr"), (4.15)
where the boson-fermion couplirify, is the generalized Yukawa interaction
n 1
=1 = 3 [ Via@lza@ Vi ea)ds. (416
i,i’=1

On account of the positive definite nature of the ker)r?eji, A (x), the bosonic part of
Hp, namely

n ¢ L
HY = H§ + Z/O dx/o dy Vipa()* A2via(x = y) Vilpa (), (4.17)
i=1

is a sum of positive operators. In fact, the bosonic Hamiltonian can also be written,

H® = H{ + 2207 ,. (4.18)
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where we note the identity,
2 v (" ¢ 2
Ora(V) = Z/O dX/O dy Vi(pa(x)* A%via(x — y) Vilpa (). (4.19)
i=1

The bosonic Hamiltoniarﬁl[’( is not normal ordered, and unlid&, (AV), it has no limit
asA — oo.

The second family of approximate superchar@es, are also related tél, . How-
ever, their square has an error term in the standard supersymmetry algebra,

03, =Hy — P+ ¢R, (4.20)

whereR is the same operator that arose when analyzing the square of the free supercharge
02.0. The error term is given in (3.12). We use the following result from [10]:

Proposition 4.1. Assume the potential V satisfies the assumptions QH, EL, assume the
relations TR, and assume the definitionsof Q o, 02,4, Ha, and P in Sect. 3 and Sect. 4.
Thentheforms Q, Q2 A, Ha, and P define self adjoint operators on . The operators
H, are bounded from below. The operators Qa, Hx, and P mutually commute, and
they also commute with J.

5. Estimates on Operators

We consider here the basic properties of the Hamiltonian and the supercharges. This
leads to consideration of estimates that involve implicit renormalization cancellations.
These estimates depend only on the form of the underlying operHtofs, N, etc.,

and they lead to inequalities of operators or their norms. These estimates do not involve
further cancellations of the sort that arise in the proof of estimates on partition functions,
that we consider in the following section.

5.1. A Priori Estimates. The results here require certadrpriori estimates involving

the family of HamiltoniansH, = Ha (AV), or the associated family of self-adjoint
semigroupse AHa V) that the Ha (A V) generate. The proofs of these estimates are
lengthy, so we establish them as the central results in the companion paper [10]. These
estimates are of utmost importance, so we give an overview by collecting together
the necessary statements. Within the context of constructive quantum field theory, the
estimates we assume are of a standard nature, though they have not been previously
proved in the context of zero-mass (twist) fields that we use here. The operators occurring
in this section have been introduced earlier in this paper. For more details about these
definitions, see [4]; for analytic details, see [10].

e In case the following inequalities involy& we takes > 0. We choose a given, fixed
¢ € (0, ], and a given, fixed/ satisfying QH and EL of Sect. 1.1, and we define
the Hamiltonian with the twist relations TR. The operators in question act on a Fock
spaceH = H(S2, ¢) depending on the paramete®s ¢. We fix these parameters
throughout the approximations in this paper. By convention, we generally do not note
the dependence of constantsgrwhile we generally indicate the dependencé/on



The Elliptic Genus and Hidden Symmetry 103

e We require certain estimates that are uniformAinthe parameter that designates
the high-frequency mollifier. There exist positive, finite constavits = M1(V),
Mo = M>(V), andM = M(B, V) that are independent @f, and ofs € (0, 1], and
such that

N < MiHA(\V) + Mo, (5.1)
Hy/? < MUHAGV) + My, (5.2)

and
Tryg (77700 < M(p). (5.3)

There exists a self-adjoiR(8) = R(B; 1), thatis a semigroup ii and that depends
on the parametex, and such that

le™PHARY) — R(B)| — 0. as A — oo, 54)

for eachi € (0, 1].
e We require the following estimate that it uniform in A. Given A, there exist
constants\f; = M1(A, V) andM» = M»(A, V) such that for alh. € [0, 1],

Ho+ A2 QF\ < M1 HA(AV) + Ma. (5.5)

Remarks. Itis no loss of generality in (5.5) to increase the constants if necessary, soin
addition 1< Mq andHg + A2 Q1 A+ <M1HNAV) + M>, SO Hp + A2 Q1 AFI<
My (Hp(AV) 4+ M>) as well. We make this assumption.

From the norm convergence of semigroups (5.4), we infer that the limiting semigroup
R(B) has a self-adjoint generatéf = H (\.V). This defines the limiting Hamiltonian,
and R(B) = e PHOV) The uniform bound on the trace ef #72*Y) ensures that
H()V) is bounded from belof,and there exists a constaify = M3(1V) such that

0< HOV) + Ms. (5.6)

For this limiting theory, there is a self-adjoint operadr= Q (A V) that commutes with
P and that anticommutes with, for which

OWV)2=HOV)+ P. (5.7)

We comment briefly on the mollifiéf(k/A) that we employ, rather than a mollifier,
for example, that completely eliminates Fourier modes with l&gen the latter case,
the approximating Hamiltonians have not been proved to be bounded from below. We
first studied the special advantages of a mollifer ikevith slow decrease at infinity in
[14], where we used this property that expresses “almost-locality”, to show that a class
of bosonic Hamiltonians are bounded from below. We showed that the normal-ordered,
purely-bosonic bilocal HamiltoniarH? :, with Hf{ of the form (4.17), is bounded from
below. Specifically, in [14] we treat the case with= 1, with a massive (rather than a
massless) unperturbed HamiltoniHﬁW and with no twistgp = 0.

We outline the basic idea of our method in [10] to utilize the slowly decreasing prop-
erty of the mollifier to prove the estimate (5.3). We begin by representigqa’TﬁHA) as

4 Without good control over convergence, such as the norm-convergence of semigroups that is the case
here, a uniform bound like (5.1) or (5.2) éfy (V) is insufficient information to establish a lower bound on
HQAV).
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afunctional integral. Thisis the functional integral for the normal-ordered purely bosonic
actions, multiplied by a regularized Fredholm determinant arising from the expectation
in the fermionic modes. We insert an appropriate partition of unity Y57 ; x; into

this integral, thus dividing the integration into a sum of integrals over patches. To obtain
an effective bound, we need to replace the non- local bosonic part of the action by a
related local term. We do this on each patch, using several things: the positive defi-
nite form of the interaction term, the explicit form of the mollifier functiotk/A), in
particular its monotonic property and its slowly decreasing character as a function of
|k|. Using these properties, we bound the bilocal (boson ic) action from below on the
patchx;,. We obtain a lower bound on the bilocal action with the non-local coupling
constant?v;  (x — y) by a similar local action but with a local, coupling constant of
the forma2 % (i’d/A)? 8(x — y). Hered + 1 = 71 denotes the degree of the polynomial

V. The coefficient ok 2 here is¢ (i’d / A)2, and this vanishes a5— oo (namely at high
momentum). In fact for constamt, we have the asymptotiogi (i'd /A)2 ~ A2i’ ~%.

We use the local action to estimate further non-local perturbations of lower degree, as
well as local perturbations of lower degree, on the patchThis results in an additive,
constant error term;: that has a magnitude; | < o(1)(#(i'd/A)~2) < o(1)(")%,

"

which diverges ag’ — oo. The measurey; | of the sety; satisfies|y;/| < e '
wheree” = ¢”(V) > 0. This constant is small, and it depends only on the polynomial
V. Therefore, fixing/, we can choose(V) > ¢ > 0 sufficiently small so that the prod-
uctelil| x| is small for largei’. When summed ovet it leads to a finite estimate on

the integral. We also use the approximate local bosonic action to estimate the non-local
terms arising from the regularized Fredholm determinants. In this fashion we establish
the uniform upper bound (5.3) on the trace of the family of approximating heat kernels.
The method to establish the remaining bounds is similar.

5.2. Traces. In this section we collect a few general remarks that we use later. The
Schatterp-norm of T for operators orH is defined as

1= ()

These norms satisfy Hoélder's inequalitigd’ S|, < |[IT,lISlly, wherer =

pq/(p +¢q),and 1< r, p, gq.Furthermore, the trace norin ||, is also given by
711 = SURitaryw 1 Tr (UT)I, see Sect. 1lI of [18]. Thus

[Trag (D) < IT']|1. (5.8)

An operatorT with ||T|; < oo is said to betrace class, and such operators have a
basis-independent trace. A sufficient condition to ensure the cyclicity identity of the
trace,

Tryy (AB) = Try (BA), (5.9

is thatA is trace class ang@ is bounded.

One says that a self-adjoint semigroRyr) is ®-summable if there is a function
M(t) < oo such thatjR(#)ll1 < M(¢) for all 0 < z. A family of semigroupsR; () is
uniformly ®-summable if

R, < M), (5.10)

forall j.
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Proposition 5.1. Assumethat { R ; (¢)} areafamily of uniformly ®-summable semigroups
on a Hilbert space #, and assume that | R;(r) — R(#)|| — 0 as j — co. Then R(¢) is
trace class, and R (¢) convergesto R(z) in trace norm,

lim |R;j(t) — R(®)|, =0, and |R(®)|l1 < M(z), forall 0<1. (5.11)
j—o00

Furthermore, for any bounded operator A,

Try (AR(1)) = lim Try (AR;(1)), forall 0 <. (5.12)
Jj—>00
Proof. Write
Rj(t) = Ru(t) = Rj(1/2) (Rj(/2) — Ru(t/2)) + (Rj(1/2) — Ru(t/2)) Ri(1/2).
(5.13)

Thus by Holder’s inequality,
IRj(t) = Rm()ll1 < 2M(t/2) |R;(t/2) — Rn(t/2)|. (5.14)

HenceR;(¢) is a Cauchy sequence in the Schatten ideal of trace class operators. Thus
there exists a trace-class linkt(z), for which

|R;(1) = R, = 0, and [R(n)], < M(). (5.15)
Since|R; (1) — R(1)|| < |Ra(t) — R(1)|,, we infer from (5.15) thaR (1) = R(r).
SinceR(t) andR;(z) are trace class, A is bounded thed R(z) andA R (¢) are also
trace class. For a trace class operdtpwe use (5.8) and Holder’s inequality to obtain

|Tra (AR;j (1) — AR(®D))| < | AR;j(t) — AR, < IAll|R; (1) — R(®)|

;» (5.16)
from which (5.12) follows. This completes the proof of the lemma.

Lemma5.2. Lete #H peaself-adjoint, ®-summablesemigroup, andlet A beabounded
operator on . Then the map

(0, B) > Try (A ef””*ﬂ”) (5.17)

extends holomorphically in g to all i € H (keeping o € R fixed). Suppose the unitary
group ¢° % isa symmetry of H, and there exist constants M1, M, < oo such that

+P < M\ H + Mo. (5.18)

Thenfor i € H, themap (5.17) extends analytically in o into a strip about thereal axis
of width proportional to %(B), and otherwise only depending on My and M.

Proof. Theta summability ensures that is bounded from below, so it is no loss of
generality to add a constantihso H > 1. With this convention, we can replace (5.18)
by the assumption that there exists a consdnt M (M1, M>) < oo such that

+P <MH. (5.19)
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To prove analytic continuation i#, itis sufficient to establish a neighborhood of absolute
convergence for the power seriexiof

Tray (e—(ﬁ+e)H> _ i (—e)" /n!Try (H"e_ﬁH>,
n=0

starting initially with realg. Expres$ in its real and imaginary pars = R(8) +iJ(B).
The operatoe®>® is unitary, so for 0< R(B), the operatoH"e ##/2 is bounded
in norm by (n/%(8))". So using Holder’s inequality and (5.8)ry (H"e PH)| <
(n/R(B)" e PH/2||1. Then the exponential series converges absolutelyidior<
R(B)/e, yielding

e¢]

lel” - B
> ST (He )| < = lele/MB) e PRy <00, (5.20)
n=0 "

as desired. We assume thaand H commute, so we simultaneously diagonalize these
operators. We conclude from the spectral representation and (5.19Pthat M" H"

for non-negative integers Proceed as above in the dom&ih< R(B)/Me, the power
series ine for ¢/(“+9)P¢—BH2 conyerges absolutely in operator norm. Using Hélder’s
inequality and (5.8), it then follows that 7r(e'* * =) is real analytic inv for i € H,

and the proof is complete.o

Proposition 5.3. Assume quantumtwist fieldsinteract, with the nonlinearity determined
by a polynomial V as specified above. Assume QH, EL, and TR of Sect. 1.1. Then there
exist constants M1 and Mo, independent of A , and such that

+P < MiHp + M>. (5.21)
As a consequence, with a new constant M1,
Q4 < MiHp + M. (5.22)
Proof. The identityQi = Hp + P of (4.14) gives an upper bound enP,
—P < Hj. (5.23)

In order to obtain an upper bound &) we take into account the details concerning the
second component of the supercha@ge, . From the relation (4.20) we infer that

P < Hp +¢R. (5.24)

Thus to establish an upper bound Bnit is sufficient to establish an upper bound&n
in terms of H5 . We use the explicit form foR in (3.12), and the following comment;
see [4] for details. It therefore follows th& satisfies the bound

2
+R < SN, (5.25)

where N is the total number-of-particles operator. Using (5.1), we infer thak
M1H, + M>, with constants independent of. The bound (5.21) then follows, and
from (4.14) we also infer (5.22).0
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5.3. Continuity of the Heat Kernel for A > 0. We establish Lipshitz continuity, in the
trace-norm topology, of the map

A e PHAGY) (5.26)

from the parametex € (0O, 1] into the approximating heat kernels. Stated in detail, for
each allowed’, eachfixed < oo, and each fixed < (0, 1], and for|A» — /| sufficiently
small, there exists a constatt such that

He‘ﬂHWV) — ¢ PHAGY) Hl <Mr—N). (5.27)

Unfortunately, the estimates that we have provedHar(\. V) are insufficient to show

that the map (5.26) is differentiable in and we do not know whether this is true. Also,

we donot know whether Ty, (e~ 4?V)) is differentiable ini. However, in the next

subsection we show that the partition functionTi"e =4 *)) js differentiable in.
We study the\-derivative of the approximating family of heat kernels. koi’ €

(0, 1], andx # X/, define the difference quotient ef #74V) py

e~ BHAOV) _ ,—BHAYV)
A=)

In the following we letR(8) denote the self-adjoint, trace- class semigroup generated
by Hx (AV), and letR’(B) denote the similar semigroup generateddy(A'V),

APGLA) = ., andlet Amin=min{x,)'}. (5.28)

R(B) = e PHAOY). and R'(B) = e~ BHAG'V) (5.29)
Define the functiorFf (A, A, s) for A, A, s € (0, 1) for allowed potentiald’ by

FPo, i, s)
= —Be PO (O (V) Qra(V) + Qra(V) QA V) e”E79BHAGH (5 30)
We also write this as
FP(, 3 s)
= —BR(B) (OAV) Q1 a(V) + Q1a(V) QAG/V)) R'(1—5)B). (5.31)

Note that the bound (5.3) ensures tipdt(x, 1) is trace class. By itself, this does not
establish (5.27), as the trace norm may diverge’as- A. Also the bound (5.3), taken

together with the bound (5.5), ensures tlﬁﬁt(k, A/, s) is the sum of two trace-class

operators. In order to verify tha'ff (A, A, 5) is trace class, write each of the two heat
kernels in (5.30) as the square of a heat kernel. The bound (5.3) shows that one of the
heat kernel factors by itself is trace class. The second heat kernel mulgpliesV),
OA('V), or Q1 A(V) (either on the left or on the right); the estimates (5.3) and (5.5)
show that each such product is bounded. Since the product of a bounded operator with a
trace-class operator is trace class, we infer H}(%(m A, s) is trace class. But we have
no control over how the trace-norm diverges (for fix@dass approaches an endpoint
of the interval. We now address these issues.

Let us denote the degree of the polynoniiaby

n =degre¢V), andnote 2<n, (5.32)
in order to satisfy the elliptic growth assumption EL of Sect. 1.1.
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Theorem 5.4. Assume quantum twist fields interact, with the nonlinearity determined
by a polynomial V as specified above. Assume QH, EL, and TR of Sect. 1.1. Let 8 > 0.
Let j € Z, befixed. Thenthereexistsa constant M = M(B, A, V) < oo, such that the
difference quotient A? (1, 1’) satisfies the trace-norm bound

[ AP0 1)y = M oA™Y, (5.33)

min
for all A, 2" € (0, 1]. Lipshitz continuity (5.27) then follows.
Theorem 5.4 is contained in Proposition 5.5 and Corollary 5.7 that follow.

Proposition 5.5. Under the hypotheses of Theorem 5.4, there exists a constant M =
M(B, A, V) < cosuchthatfor A, A" € (0,1],fors € (0, 1),andfor0 < a < 1/(n—1),
the following holds:

(i) The operator Ff (A, A/, s) defined in (5.30) has a trace norm bounded by

” FPoow, s)Hl < Mk (s_1+°‘/2 1—s) V2451201 s)_l+“/2) .
(5.34)

(i) Themaps — Ff (A, A/, s) iscontinuous in the trace-norm topol ogy.

Lemma 5.6. There exists a constant M3 = M3(j, V) such that the following bounds
hold:

(i) Foranyw € [0, 1], theinteraction QO (V) satisfies

Qr.a(V)?* < M§ (N + 1)*=D

and also )
Q1 A(V)* < M§ (Ho+ D™ Y. (5.35)

Here N isthetotal number operator and 7z isthe degree of V.
(i) Thegeneralized Yukawa interaction Y, + Y = {Qo, Q;,A(V)} satisfies

+{Q0, Q1.A(V)} < M3 (Ho+ )" *. (5.36)

(i) Fr0<ae<@—-1"10<a<1and0<A <1,

”(HA(AV) + Mp)~1-0/2 1A (V) (HA(A’V) +M2)—a(n”—1)/2”
< MzA~ Y. (5.37)

Proof. The estimates leading to this bound rely on the expansion of the bosonic field
into its Fourier representation. The Fourier coefficients of the field are linear in creation
and annihilation operators, multiplied by a kernel thagjsy virtue of the mollifierz,

but with an/? norm depending oi¥ and also omA . These expansions and properties
are given in detalil in [4]. As a consequence, the operQ@;y\, that equals (4.19), has

an expansion in terms of the fields that is a polynomial in creation and annihilation
operators of degree(2 — 1). Each monomial in this expansion, expressed in terms
of creation and annihilation operators, has/arkernel. As a consequence, there is

a constantM3 = M3(j, V), such that the purely bosonic interaction teQm,A(V)2
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satisfies the upper bouanLA(V)2 < M3 (N + I)"~1. This estimate is a standard
property of monomials in creation and annihilation operators V#itkernels; in the
constructive quantum field theory literature this estimate is known a&;abound,

and the contribution to the constamt; from each monomial is th&? norm of the
corresponding kernel, see [3]. Because the twisting angle is fixed and lies in the interval
0 < ¢ < &, there is a constaritls = Ms(¢) such that the commuting operataysand

Hp satisfy N < MsHp. Thus with a new choice of the constaviy (and suppressing

the dependence op, which is fixed) we obtain the bounds (5.35) with= 1. The
interpolation inequalities with & « < 1 then follow from the Cauchy representation

for the fractional powers of the resolvents, see Chapter V, Remark 3.50 of [16].

(i) The bound

£{Q0. 01,2} < Q%+ 0%, = Ho+ P + 07 ,, (5.38)

leads to the desired estimate with a new constantUse the elementary bourl < Hy
to estimateP, and use the bound (5.35) with= 1 to estimateQ%A.

(i) The bound (5.5) with 1< M; andl < Hx(AV) + M> ensures that
32 Q1 A(V)? < M1 (HA(WV) + M2). (5.39)

As a consequence, the domain of the opergtpn (V) = Q; (V) contains all vec-

tors in the domain of Hy (AV) + M2)Y/2, for any . > 0. It follows that we have an
interpolation inequality: for ang € [0, 1],

K010 A (VP < My (HAGY) + M2)™ e (5.40)
The operator form of this inequality is
HIQ:,A<V)|1‘°‘ (Hy(LV) + Mp)~A)/2 H < M2 e (5.41)
Using part (i) of the lemma, we also have the operator interpolation inequality,
[1e1a)I= (v + D772 < prf?, (5.42)

Note that the bound (5.42) does not invoiveCombining (5.41) and (5.42), and the
self-adjointness 00 ; o andHx (A V), we have

[HAGV) + Moy~ 0072 0y (V) (HAG'V) + M)

=< H(HA()»V) Mo~ 02 o) (V) (N + I)fa(ﬁfl)/ZH
(5.43)

x "(N+I)a(ﬁ—l)/2 (HA(M'V) +M2)—a(fz—1)/2H

S M](.l—a)/z)\71+a'
We obtain the interpolation bound on
H (N_i_l)()((;l*l)/z (HA()L/V)_FMZ)*O‘(;l*l)/zH < M?j(ﬁ_l)/z,

using (5.1), as long as(n — 1) < 1, which we assume. This completes the proof of the
lemma. O
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Proof of Proposition 5.5. Expande\j (A, )/, 5) according to the definition (5.31). Write
thefirsttermR(s8) QA (AV) Q1. A (V) R'(1—s)B)termin—F (, 2/, s) as the following
product of four bounded operators separted in braces,

R(sB) Qa(RV) Q1A (V) R'((1—5)B)
= {R(sB/D} {R(sB/4) Qa(AV) R(sB/H)}
x [RGB/ Q1 a(VIR'BL—9)B/H} {R'(L—5)B/D}. (5.44)

Apply Hoélder’s inequality to bound the trace norm of this product of four terms, using
the exponents, oo, oo, X-. Then

|R(sB) Qa (V) Qra(V) R'(L—5)B)],
< IR(sB/Dl1js IR(sB/4) Qa (V) R(sB/D)|
x |R(sB/8) Qra(V)R'BA=5)B/D| [R(A=)B/D] 44, - (5:45)

Bound the first and last factors on the right of (5.45) using the uniform estimate (5.3).
Thus

IRGB/Dllyys R (A =9B/D] 40y = MB/D. (5.46)

Use the spectral theorem to bound the second factor on the right of (5.45) uniformly in
A, by

IR(s8/2) Qa(AV) R(sB/H| < O(1)s™/2, (5.47)

where the constant i (1) depends o and A , but not oni. Bound the third factor
in (5.45) by

|R(sB/4) Q1.a(V) R'(1—5)/2)
< [RGB/ HAGY) + M|
—(1-a)/2 ’ —a(i—1)/2 (5.48)
x | (HAGY) + M2) 01.A(V) (HAK'V)) |

x |(HAGV) TR (@ = 5)8/2)].

The first factor on the right of (5.48) 9 (1) s—1~%/2, again with the constant i@ (1)
depending o8 and A , but not on.. From Lemma 5.6 we infer that the second factor
in (5.48) isO (A ~1t%), with the same proviso about(1). Finally we estimate the third
factor in (5.48) byo (1)(1— s)~*@—D/2 with 0 (1) depending om\ andg. These three
bounds yield

[R(sB/4) Q1 a(V)R'(1—5)B/2)| < 0@Q) 2=t g=A0/2(q _ 5)~e@=D/2,
(5.49)
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We combine the estimates (5.46), (5.47), and (5.49) to obtain
|R(sB) Qa(AV) Qra(V) R'(A=$)B)||, < O@a~ e s~ IHterz (g — 5)=eti=D/2,
(5.50)

which is the first term in the bound (5.34).

In order to bound the second terR(sB) Q; A(V) Qa(X V) R'((1 — s)B) in
—F(x, ), s), repeat this procedure, but use the adjoint bounds. This yields the esti-
mate

IR(sB) Q1.a(V) QA V) R (A —95)B) |,
< 0(1)()L/)—l+<x s—a(ﬁ—l)/Z(l _ s)—l+(x/2. (5_51)

Adding (5.50) and (5.51) completes the proof of the desired estimate (5.34).
We now establish statement (ii). Let® s < s’ < 1. Using the bound (5.1), we
infer that there is a constaM such that, fon. € [0, 1], the heat kernat—S#HAV) jg

bounded in norm by/*#. ThereforeHe‘sﬂHA(W) — S BHAY) H < 2M#.We can also
bound the difference

o—SBHAGY) _ ,—5'BHAGYV) _ (I _ e—(s’—s)ﬁHA(AV)) eSBHAGY) (5.52)
using the fundamental theorem of calculus, giving

”e—sﬂHA(AV) _ o—S'BHAGY) ” < MP s —s|/s.

Combining these two bounds on the difference, we infer that there is a new constant
M > 1 suchthatforany & ¢’ < 1,

He—sﬁHA(AV) _ S BHAGY) H < MP (|S/ _ s|/s)5,. (5.53)
The same bounds hold witH (A V) replaced byH, (A'V). To simplify notation, let

us denoteH = HA(AV), H = HAx(\'V), 0 = OQA(AV), Q' = Q,(\V), and
01 = Q1.A(V). Now write the difference

FROLN, s) = FROL A, s)
=B (Q Q1 + 01 Q) e WP — g P (Q 0 + 0 Q) P
—B (1 _ ef(s’fs)ﬂH) e—SBHI2Z FBI2() 3! 5) e~ (A=9)BH'/2
4 Be~SPHIZ pBI2() 3/ ') ¢=(A=s"BH'/2 (e—“/—s)ﬂ” - 1) . (5.54)
From (5.53) and Hdlder’s inequality, we obtain for angQ’ < 1,

” FPoL ) — FEGL Vs

1

< BMP|s' — 5| (s*e/ FB2G ), )

Fﬂ/Z()\’ z, S)Hl +1- S/)fe/

l) . (5.55)

Taking the bound (5.34) into account, we conclude in the cases0< s’ < 1 that
the maps +— Ff(/\, A’, s) is Holder continuous in trace norm with an exponentA
similar bound holds if 0< s’ < s < 1, but withs ands’ interchanged, completing the
proof of the proposition. O
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Corollary 5.7. We have the following.
(i) Letn > 0.For any bounded operator A,

1-n 1-n
/ Try (AF (A, M, 9))ds = Try (A/ FOo ), s)ds). (5.56)
n n

(i) Let » > 0. The operators fnl’” Ff(x,x/,s)ds converge in trace-norm as
n — 0, defining fol Ff (A, ), s)ds. Thus for any bounded A,

1
f Try (AF(\ A, 9))ds = Try (A/
0 0

1
F(h M, s)ds). (5.57)

(iif) For A = I, thislimit equals the difference quotient,

1-n
lim HAB(A,X)—/ FPo, o s)ds| =0, (5.58)
n—0 n 1
and
1
Aﬂ(,\,,v)zf FP(x, 3, s)ds. (5.59)
0
(iv) For any bounded operator A,
1
Try (A AP, 0)) :/ Try (A F}f(,\,)v,s))ds, (5.60)
0
yielding the estimate
[Tra (AAP G, 1)) < OO IALL (5.61)

Proof. Statement (i) of the corollary follows from the continuity Ef(k, Ays)ins,
namely Proposition 5.5.ii. Statement (ii) of the corollary is a consequence of the es-
timate of Proposition 5.5.i. We now verify (iii). Consider the dom@inx D} =

e SHAOV) 1y o= (=)HA('V) 9y Both Hy (AV) and Hx (A'V) are sesqui-linear forms
on this domain. Furthermore, from Proposition 5.3 we infer that b@fAV) =
O0A(AV)2— PandHA (X' V) = Qa(X'V)2— P on this domain. Therefore, we have the
identity of forms,
HA(WV) — HA(X'V) = QA(AV)? — QA (A'V)?
= 0A(V) (QA(LV) — QA (V')
+ (QA(V) = QA(V)) QA (X'V)
= (A =2)(QaV)Q1A(V) + Qr.A(V)QA(V)))

onD, x D;__. Consequently, oftf x #,

(5.62)

HAx(AV) —HpA(A'V ,
oS HAGY) ( Al i = )JA( )) o~ A= HAG'Y) _ —Ff(k, 2, s). (5.63)
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Part (ii) of the corollary asserts that this expression has an integrab avén, 1 — 7],
that converges in trace norm as— 0. Therefore

1 I 1
/ e SHAOV) <HA @Wv) - HA()\V)) e_(l_S)HA(A/V)ds = f Ff()», )»/, s)ds.
0 0

A=)\
(5.64)

But the left side of this identity is the difference quotiextt(x, »'), so we have identified
then — O limit. Finally, the same argument proves that

-0, (5.65)

1-n
lim HA AB(L, L) —/ AFPOLN, 5)ds
n—0 n 1

and the bounds of statement (iv) then follow from integrating the estimate of Proposition
55i. O

6. Estimates on Traces

In this section, we estimate certain partition functions. Their proof involves further
cancellations, that are not captured by the estimates studied in the previous section. The
proofs here use the estimates on operators from the previous section, both to justify the
existence of the objects studied here, as well as to estimate the quantities that arise after
exhibiting cancellations in the trace that defines the partition functions.

6.1. Differentiabilityfor » > 0. In this section we establish diﬁerentiability@ﬁ\v asa

function ofi. Choose the bounded operatbin Corollary 5.7.ivto bed = e 10/ —io P,
Then the corollary yields a representation for the difference quotient

AV 2dV 1y
SaA(r, )u/) = M = lim / TrH (A F/f()‘v )J’ s))ds
n

Y
A—A n—0 6.1)

- fOlTrH (A FLG ', 9)ds.

Furthermore, the putative derivative " also has an integral representation, namely

1-n 1
5o, 1) = lim Tray (A Floa, s))ds - / Try (A FPoua, s))ds. (6.2)
n—0 0

n

Although both representations (6.1) and (6.2) are well defined, we have not established
thats (A, ") has alimitas.” — A, nor if this limit exists whether it equals, (1, 1). In

this section we find the consequence of the smoothing provided by the specific operator
A in the partition function, This allows us to prove differentiability of the partition
function, and actually its vanishing.

Theorem 6.1. Under theconditionsof Theorem2.1, themap & — 34" isadifferentiable
function of A for all 1 € (0, 1]. In fact, the derivative vanishes, 234" = 8, (A, 1) = 0.
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Proof. The bounds in the previous section show #hatx, A’) is bounded. To establish
the theorem, we show that the difference quotient (6.1) actually converges to zero,

lim 8,1, 1)) =0, (6.3)
A=A
for A > 0. A similar argument shows thagx, A) = 0.

We claim that for each fixed < (0, 1], there exists a positive, constamt =
M(B, A, 1, V), not depending oi’, such that

| Trag (AFPGL N, 9) | < ML= 3 s7Y2 (01— 5)7Y2, (6.4)

whenevei’ € (0, 1] lies in the neighborhood éfdefined byi3, = {A : |V —A| < %A}.
Let us assume this bound. As a consequence,

1 1-n
/ Try (AFP (L, ), 9))ds | = lim / Tro (AFP (0,1, 5))ds
<aM|r—1], (6.5)
for x, 2" € (0, 1] and’ € B,. Thus according to the representation (6.1),
| 8AOLA) | < ML =2, (6.6)

fora, A € (0, 1] and)\’ € B;, and the derivative 03§\V vanishes as claimed.
Thus we have reduced the proof of the theorem to the proof of (6.4), which we
now establish. We use the notation in the proof of Proposition 5.5. Write the density

Try (A Ff A, ), s)) for the difference quotient as

Try (A FRGL . 9)) = BTrw (A RGB) Q 01 R (L= 5))

+ BTry (AR(sB) Q1 Q' R'(1—5)B)).
The operatod commutes withR and withR’ and it anticommutes wit, Q’, andQ;.
Also, we have seen thad&(sB) Q; andQ R’((1 — s)B) are both trace class. Therefore
using cyclicity of the trace,
Try (AFL0. 2. 9) = = BT (4 Q1 R((L=9)B) Q R(5P))

+ BTr (ARGP) Q1 Q' R'(L—5)P)).

The bound (5.5) assures that the rang&a$ in the domain of botlQg and Q;, and
hence in the domain of bot® and Q’. Thus in the first term, we can writ® =

Q'+ (0-0Q)=0"+(r—1)Qy,toyield
Tr (AFLOL 2. 9)) = — BTr (ARG Q1 R(A—)p) ©)
+B (A=) Try (A Q1 R'(L—5)B) Q1 R(sP))
+BTra (AR(sB) Q1 Q' R'(1—5)B))
= —BTri (ARGH) Q1 Q' R'(1—5)P))
+B (A =2)Tr (AQI R(1-5)B) Q1 R(sB))  (6.9)
+ BT (ARG Q1 Q' R'(1—5)B))
=B (A —2)Try (A QI R(L—9)B) Q1 R(sP))
=B (A=) Tra (AR(sB/2) Q1 R'(L—5)B) Q1 R(sB/2)).

(6.7)

(6.8)
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We estimate (6.9) using Holder’s inequality, obtaining

T (AFf G2 9) |
< BIn—=NIIAI RSB/, |RsB/4 Q1 R'(L—s)8/4)|
X |R'((L =)/, |R'(L—5)B/2) Q1 R(sB/2)|
< BIn— 1| M(B/% |R(s8/4) Q1 R'(L—5)8/4)|>.

(6.10)

The constantM (8/4) in the last term is the constant in (5.3), and the bound)gn
involves the self- adjointness @;, R, andR’. From (5.5) we infer that with a new
constantMy = My(B, A, V),

‘ Try (A FPouw, s)) ‘ < Bl =N Mgr V2 (12 (6.10)

On the setB;, we haver’ = A + (A’ — 1) > 3. Thus takingM (B, A, 2, V) =
28 Ma(B, A, V)A~2, we establish (6.4), and complete the proof of the theorem.

6.2. Holder Continuity at > = 0. In Theorem 6.1, we found that the partition function
3}\" is a constant function of for all A € (0, 1]. At the A = 0 endpoint of the interval,
Hx(AV) = Hp. If both 0 < ¢ < 7 and 0 < B, then the heat kernet #f0 is trace
class, and the partition functigd® = 39 is well defined. Howevei3’” might have a
jump discontinuity at. = 0, so it may not be the case th‘ﬁf)“’ = 39, Itis important

to demonstrate the continuity 8", and we do so by establishing Hélder continuity at
A = 0 with an exponent depending on the degtee 71(V) of the polynomial potential
V.

Theorem 6.2. Assume the hypotheses of Theorem 2.1. Let 0 < o < 2/(7i — 1). Then
thereexistsa constant M = M (e, 8, A, V) suchthat the partition function 37" satisfies

‘3}V—30‘ <M, foral 0<i<1 (6.12)

Corollary 6.3. Under the hypotheses of Theorem 2.1, thefunctionsfa?\v areindependent
of A and of A, and

3V(2,0,¢) = 3%z, 0,¢), foral xeC. (6.13)

Proof. The corollary forA e [0, 1] is an immediate consequence of the theorem.
Substitutingy V for V, with y € C, we also have an allowed potential, and also
30 = 330V = 30, 50 the identity34Y (1,6, ¢) = 3°(t, 6, ¢) extends to all

1 e C.

The first step in the proof of the theorem is to establish a representation for the
difference3® — 3*V, that is similar to the representation in the previous section for
the difference quotient (5.60), except that it is convergent ak tae0 endpoint of the
interval.
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Lemma6.4. There are constants M1 = Miy(j,V) < oo and My = Ma(j, V)
< oo such that

I < H\(A\V) 4+ Ma < My (Ho+ 1)" 1, (6.14)

andforall 0 <o <1,
| Hx+ Mo)/2 (Ho + 70212 < My (6.15)

Proof. Write HA(AV) = Ho + A2 Q1 A(V)? + A (Ya +Y}), whereY, + Y} =
{Qo, Q1.a}. Sincen > 2, the upper bound (6:14) holds trivially for= 0. The bound of
Lemma5.6.i ensures th@t%A < M3(Ho+ I)"~1. Finally, as a consequence of Lemma

5.6.ii, the terms + Y is bounded from above by3(Ho+ )" 1. Taken together, these
bounds establish (6.14). We choake sufficiently large so that < Hp (AV) + M.
The lemma then follows from the interpolation inequalify, + M2)* < M (Ho +

DNe=D valid for0< o < 1.
Fors € (0, 1), define the operator-valued function

I, ) = e PHAOY) (Hy — HA(WV)) e @=9FH0 | for s € (0, 1). (6.16)

Lemma 6.5. Under the hypotheses of the theorem, and for s € (0, 1),
(i) Both e sFHAGY) gy e=(1=9)BHo gnd =SAHAGY) f, (A V) e~ A=9)BHO gre trace
class.
(i) There exists a constant Mg = Mg(B, A, V), such that the function f/’f(k, s) hasa
trace-norm bounded by
H ff(k, S)H1 < Mgs~ 1260 (1 _ =172, (6.17)

(iii) Themap s — f ,’f (1, s) iscontinuous in the trace-norm topol ogy.
(iv) Theintegral of f f exists, and for any bounded linear transformation A,

/OlTrH <A ff(,\,s))ds = lim flnTrH (A f}f(,\,s))ds

n—0 7

n—

1
= Try (/ A ff(k,s)ds).
0

(v) Thedifference 34" — 3° hasthe representation,

1—
= Try (IimO/ ! Aff(k,s)ds) (6.18)
n

1
3 —30=p8 /O Try (A o, s))ds, (6.19)

where A = "¢~/ —io P,
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Proof. Write

eBHA po o—(1—5)pHo

< He—SﬁHA/Z
=

He—sﬂHA/z Ho e~ (198 Ho/2
s—1

x He—<l—S>ﬂHo/2 (6.20)

‘(1—s)71'

Hence using (5.3) and also (5.5), we conclude that there is a conMgantMes (8, A, V)
such that

H eSPHA f o~ (1=5)BHo

= Megs Y% (1 —5)"Y2, (6.21)
soe SPHA Hye~(1=9)BHo js trace class.
With a possibly larger constaMg(8, A, V), we also have the bound

He—s,BHA Hy, e~ (1-9)BHo H < He—sﬂHA/Z

. He—sﬁHA/Z (Hp + Mp)t~1/26i-1) H
—

1
x || Ha + MY2ED (Ho + 12|
x| (Ho + 12 e-opmor Hefﬁﬂo/zul‘s
< Mss—l—‘rl/Z(fl—l) (1- S)—l/Z’ (622)

where we use the bound of Lemma 6.4 to bound the third term of (6.22), as well as (5.3)
to estimate the product of the first and last terms. This proves th&lfs H, ¢~ (1—9)8Ho

is trace class. A8 > 2, the two bounds (6.21) and (6.22) taken together yield the proof
of (i—ii).

Let us use the notatioR(s) = e~ *PHr*Y) andRg(s) = e *#H0_ |n order to establish
(iii), take s < s" and consider the difference
| o9 = Lo,
< [(R(s) = R(s)) (Ho — Ha) Ro(1 = 5)[
+ | R(s") (Ho — Hp) (Ro(1 = 5) — Ro(L— ") |,
= | (( = R(s" = 5)) R(s/2)) R(s/2) (Ho— Ha) Ro(1—5)|, (6.23)
+ |R(s") (Ho — Hp) Ro((1—5)/2) (Ro(L—5")/2) (Ro(s' — 5) — 1)) ;-
We bound this using Holder’s inequality by

| L0 = rlou s
< (I = R(s" =) R(s/2)|| I1R(s/2) (Ho — Ha) Ro((1—5)/2)l1
x [[Ro((1 = 5)/2)|
+ |R(s'/2)| |R(s'/2) (Ho — Ha) Ro((1—5")/2)|,
x | Ro((1 —5")/2) (Ro(s" —5) = 1)
= | = R =) R&/D| IRo(@ =)/ | 1520 (6.24)

+ (7 = Rots' =) Ro(@=s"/2) [R6'/D| | 820050 |
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Use the bound (5.53), with & ¢’ < Z(n_l—l) as well as Lemma 6.5.ii, to obtain with a
new constands = Mgs(B, A, V),

Hff(k,s) _ ff(x,s/) . < Mg | g |€’S_1+1/2(ﬁ—1)—5/ 1 s)_l/z

/ ] (6.25)
+ Mg |s' —s | () 2O (1 )~V

This establishes continuity. The proof of (iv) follows the proof of Corollary 5.7, and we
omit the details. Takingt = I'e~?/~i°? "and observing that

ai (e—sﬂHA()»V)e*(lfS)ﬁHo) - ff(k,s)
s

yields (v). This completes the proof of the lemmaz

L emma 6.6. Assume the hypotheses of Theorem 2.1, take A = I'e™%/=9P and let
s €(0,1).

(i) Wehavetheidentity

Try (A I s))

— —A2Try ( Ae~@9BHO2 () g=BHAGY) o\ (V) e—(l—s)ﬁHo/z)
(6.26)

(i) Thereexistsaconstant M7 = M7(B, A, V) such that for all « € [0, 1/(7n — 1)],
‘ Try (A o s)) ‘ < M2 g~ be (1 — g)—e@-D) (6.27)

Proof. Part (i) of the lemma is a consequence of the fact that botA”2?V) and
e~ (1=9Ho gre trace class. Furthermore, the boun® < Hg along with Proposition 5.3
establishing a similar upper bound wikhy , shows thag —##a V) p o=(1=5)Ho js trace

class. We therefore rewritdg — Hy (AV) in ff (A,s)as
Ho— Hy(A\V) = Ho+ P — H\(AV) — P
= 03— 0A(WV)2 = QA(LV) (Qo— QA(AV))
+ (Qo— 0A(AV)) Qo.

Thus

s
= e PNV (0\(WV) (Qo— QA(AV)) + (Qo — QA(AV)) Qo) e~ 190
= —ae POV (0 (AV) Q1a(V) + Q1A (V) Qo) e”T9H0, (6.28)
Furthermore, in the first tern® » (AV) commutes with the heat kernel mollifier on
the left, so the above methods shew##1V) 0 (AV) QA (V) e~ 1=9Ho s trace

class. Similarly,0o commutes with the mollifier on the right, so the second term is
also trace class. Consider the first term. The opeeat$’s *V)/2 0, (LV) is bounded,
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the operatoe—#HA0V)/2. g\ (V) e~ (19 Ho s trace class, and anti-commutes with
e SPHAGV)/2 0\ (A V). Thus using cyclicity (5.9) one can write,

= 2 Trg (AeHHV) 0, 0) Q1 (V) e GH0)
= —ATry (Ae—sﬁHAavwz 0a(V) e SBHAGVI2 o) () e—(l—s)Ho)
— A Try (A eTSPHAGYI2 0 () = (=5 Hop=sPHACV)/2 QA(W))
=A1Try (A e SPHAOVI2 0 () e~ U=9Ho g (1) e—sﬁHA(AV)/2>
=A1Try (A eTSBHAOVI2 )\ (V) e () Ho (Qo+201,a(V)) e—SﬂHA(AV)/2>
=ATry (A e SPHAGY)/2 01.A(V) Qo e~ (1=5)Ho efsﬂHA(AV)/Z)
+32Try (A eTBHAONI2 0 () == o\ (V) e—sﬁﬂmw/z)
=A1Try (A eTBHAOY) 91 (V) Qo e—(l—x)Ho)

422 Try (A o SBHAGY)/2 01 A(V) o~ (1=9)Ho 01 A(V) efsﬁHA(AV)/2). (6.29)
On the other hand, since each term in (6.28) is trace class, we have

Tr (A£G 9) = = 2Ty (A& 0, A1) @ A (V) e~ 00)M0)

(6.30)
—ATry (A e~SBHAGY) o (V) g e—<1—S)H°).

Substituting (6.29) into (6.30), we obtain

Try (A ff (A, S))
— 32 Try (A o SBHAGV)/2 01 A (V) e~ =9H0 o, A(V)efsﬁHA(AV)/Z)’ (6.31)
which proves (i).

In order to prove (ii), observe that a consequence of Lemma 5.6.iii,avith (7 —
1)~1, is the following bound. There is a constadg = Mg(B, A, V), such that

eTIBHNGVIIA ) (1) ¢~ 00/
< He—sﬂHA(xv)/zl (HAGV) + Mz)(l—a)/ZH
X H (HA(WV) + M)~ 9/2 04 (V) (Ho + I)famfl)/zH
x ” (Ho + I)a(ﬁ—l)/zg—(l—smo/le

< Mg~ g~ (1-0)/2 (1 _ )=e@=D/2, (6.32)
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As a consequence of the representation (6.26), the facttisatnitary, and using (5.8),
we have

‘ Try (A ff(/\,S)) ’
<2 Try (A o—(1=)BHo/2 QI’A(V)E—S/SHA(AV) QI’A(V)e—(l—s)ﬂHo/Z) ‘
< 22|~ @9BH2 o\ () emIBHAGY) QLA(V)[(lfs)ﬁHo/zHl

<2 ef(lfs)ﬁHo/4H

—(1-5)BHo/4 V) e—SBHA(Y)/4 H
NT Q1a(V)e

o~ SBHAGLY)/2 H eTSBHAGVI/A o () e—(l—S)ﬁHo/ZH (6.33)

1/s

e~ BHAGY)/2|*

<32 ‘ e—ﬁHo/4H o c~BHAGVIA () e—(l—S)ﬁHo/4H2_
1

1

We have used Hélder'’s inequality with the exponefits- s) 1, oo, s~1, 0o, and the
fact that||T'|| = | T*|, as well as|e~(1=9)#H0/4| < 1. We use the bound (5.3), along
with (6.32), to complete the proof of (6.27)0

Proof of Theorem 6.2. Bound the differencé 34" — 3° | by using the representation of
Lemma 6.5.v, and the bound of Lemma 6.6.ii. Integrating this bound, we obtain for any
o€ (07 (ﬁ - 1)71)!

ENEEd Sﬁfol‘TrH (a4 £ 9) |as

<BM7T ()T —a@ — 1)1 —a@ —2) 1%

(6.34)

The parameter®in the bound (6.34) becomesin the bound (6.12). Thus we obtain
Hélder continuity with any Holder exponent strictly less thaiti2— 1), and the proof
of the theorem is complete.o

Proof of Theorem2.1. The bound (5.4), along with Proposition 5.1, ensures that the limit
of partition functions lim_, » 34" actually equal$*". There is no question about the
existence or the numerical value of the limit: Theorem 6.1 ensures that the fuﬁg;ﬁon
is constant irk. for A > 0, and Theorem 6.2 ensures 33t equals the same function
ati = 0. Since3’is A -independent, therefo®,” is alsoA -independent. As a result,

not only do the differentiability and continutity &," also hold for3*V, but 3*V is
also A-independent fon. € [0, 1]. So we have established Theorem 2.1 and the first
statement in Corollary 2.2.

7. Analyticity

In the previous section, we saw thg (z, 6, ¢) = 3% (7,6, ¢) = 3°(z, 6, ¢). In the
next section we calculatg®(z, 6, ¢) and find that it is holomorphic for alt € H and
all 6 € C. Furthermore, it actually extends to a holomorphic functiow ofThere is
an independent way to verify thaﬁ((r, 0, ¢) is holomorphic using priori estimates.
This analyticity is in a smaller domain, but/a- independent domain.)
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Proposition 7.1. Assume QH, EL, and TR, with a fixed potential V. Then for fixed real 6
and ¢, thepartitionfunction 3 (z, 6, ¢) isholomorphicin  for all r € H. Furthermore,
for fixed T € H and fixed ¢ € R, the function 3V (z, 0, ¢) extends analytically in 6 to a
strip | 3(0) | < R, where R = R(7).

Let A = I'e~i%/~i°P One can express the partition functiph as
3V(z,6,¢) = Try (Ae—ﬂH> — Try (Fe—iej—ire(ﬂ—P)/2+iﬂ(H+P)/2)

7.1
= Try (Fe—iﬁJ—irE(QZ/Z—P)-H?ZQz/Z) (7.1)

wheret denotes the complex conjugaterofWe have a representation similar to (7.1)
for the approximating family of partition functions,

BX(T, 0,¢) =Try (A e—ﬂHA) _ TrH(Fe—iej—irZ(Qi/Z—P)HﬂQi/2). (7.2)

Lemma 7.2. The approximating partition functions 3}( (0, B, 06, ¢) are holomorphicin
the following senses:

(i) Fixo eR,0 € R,and ¢ € (0, 7]. Then 3} (o, B, 6, ¢) defined for B > 0 isthe
boundary value of a holomorphic function of 8 extendingtoig € H.

(i) Fixip e H,0 € R,and ¢ € (0, 7]. Then 3X(a, B, 0, ¢) extends analytically in o
into a strip around the real o axis whose width isindependent of A .

(i) Fixo € R,ip € H,and ¢ € (0, x]. Then 3 (o, B, 6, ¢) extends holomorphically
in 6 to a strip around the real 6 axis, whose width isindependent of A .

Proof. Express the partition functio} in terms of the real variables3) =
3% (0, B. 0, ¢) = Try (Te~1/~ioP=AH}) The uniform trace bound (5.3) ensures that

3X extends to a holomorphic function gfin the right half-plane. In order to establish
part (i), we use (5.21), combined with Lemma 5.2. Finally, to establish part (iii) of the
lemma, we observe thdt, P, and H, are mutually commuting. Furthermore we use a
bound onJ in terms of| P|. In fact, using the explicit form of these operators, see [4],
we conclude that for fixed & ¢ there is a constanifs < oo such that

+J < M3|P|. (7.3)
It then follows from (5.21) that for constant$; and M», independent of\ ,
+J < M3(My Hp + M>). (7.4)

We then apply Lemma 5.2 with replacinge and J replacing P, to conclude that
3%V (z, 0, ¢) is real analytic ing. The constantd/,, M», and M3 do not depend o

, so there is a strip of uniform width about the réadxis for which3%" is uniformly
bounded and holomorphic.o

Lemma 7.3. The approximate partition functions 3}((0, B, 0, ¢) satisfy the Cauchy—
Riemann identity
a3y . a3)
—= 4+i == =0, 7.5
e 9B (7.5)

for t € H. Therefore 3} isholomorphic for T € H.
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Proof. By Lemma 7.2, the derivative &," (o, 8, 6, ¢) with respect tg8 ando exist.
Differentiating the representation (7.2), and using the identity (4.14) yields

S i =T (A (H; + P) e—ﬂHf) = —iTry (A 0?2 e—ﬂHA). (7.6)

Proposition 5.1 ensures th@t (Ha + M>)~1/2 is bounded, at least if we choosé

sufficiently large sd < Ha + M>. But (5.3) ensures thad , e #Hr/2 = ¢=BHA/Z 0

is also bounded and trace class. As a consequence, we use cyclicity of the trace and

A Q) =—0xAtogive

Try (AQieiﬂHA) =Try (A (eiﬂHA/z QA) (QA eiﬁHj/z))

() 4 (0ne )
— _Try (A Op e PHN2 0, e—ﬁHA/2>
= —Try (AQ3eP) =0,

completing the proof of analyticity in € H. O

(7.7)

8. Evaluation

We verify the representation for the elliptic genus in the case that the potériiaero.

Proposition 8.1. Choose ©2; € (0, %] for1 <i <n.Take V = 0 and assume TR and
NC. Then the partition function 3° is given by (2.4).

Proof. Define

f Qi, ifO <k
Q: (k) = . , 8.1
i () 1-Q;, ifk<O0 ®.1)
and the functions
. ot
yL (k) = eFOUTPK - and y] (k) = £FOU GBI, (8.2)

The momenta range over the following lattices,
KV ={k:tke2nZ— ¢}, andK],={k:tke2rZ—Qf (h¢}). (8.3)

We require that O< ¢ < 2r and O0< @;, 1 — Q1 < 1, so zero is not an allowed
momentum,
o¢ k! Kl K. (8.4)

In caseV = 0, the partition function factors into a product of a fermionic free-field
part and a bosonic free-field part. We calculated the free bosonic and fermionic partition
functions in Theorems 2.2.1 and 5.4.1 of [4], yielding

30 _ yé/zli[ l—[ l—[ 1—[ (1 B yJ{J(kb) (1 B yf»i(_kﬂ)>

b (12
iy 11—y] ;&)
i=i \keK? wek! kK’ Vil

(8.5)
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The overall factory’/2 arises from the normalization consta@f in (1.13).
Split each product into terms indexed by Z, and separate the terms with positive,

negative, and zern. Note thatyf’l.(k) = yf’i(—k)*. (The yj;,. satisfy such a relation

only whenQ; = 1/2.) Fork = (Znn — Xi{) /¢, andn € Z the functionsy/ib:if(ik)
take the following values:

yl | vtk ) y! (=)
n=0| (z/n% (o) (z/y)t= (D)%

n>0|g"1/yD% | ¢" (/2% | " Q/yD% | q" v/
n<0|g"@y® | g"o% | ¢ @y | g %

Therefore (8.5) equals the product of ratios made from these 12 terms, with factefs 1
in the numerator and factors-1y? in the denominator. Group the terms depending on
g near each other, to obtain

0 _ e [ A= @/ EHA- 6D 8.6
T H{ (1= @/MA= D) (8.6)

% lO_O[ (1 — ﬁn(l/yZ)Q,) (1 — qn (yz)ﬂ,) (1 _ qn(z/y)lfﬂi) (1 _ qn(y/z)lfQi)
10 (1-7"A/y0%) 1-7"6D%) (1—q"/»%) (1 - q"(v/2)%)

Using the definition (1.16), the product (8.6) is

n

30 - o2 [T AT R @ 40) 0a(r. (A= 20 (91 —6)
L0179 0T+ 0) 01z, @ (9T - 0))

(8.7)

n

(/217 (e (L= ) (6 — ¢7))
_ .¢/2
= 1:[ N 2O —¢r)

The theta functions depending @ccur in both the numerator and the denominator. We
also use here the fact that the functibnis odd in the second variable. This completes
the evaluation of°, and it also completes the proof of Corollary 2.2
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