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Abstract We give a mathematical construction of Euclidean quantum
field theory on certain curved backgrounds. We focus on generalizing Oster-
walder Schrader quantization, as these methods have proved useful to es-
tablish estimates for interacting fields on flat space-times. In this picture,
a static Killing vector generates translations in Euclidean time, and physi-
cal positivity is played by positivity under reflection of Euclidean time. We
discuss the quantization of flows which correspond to classical space-time
symmetries, and give a general set of conditions which imply that broad
classes of operators in the classical picture give rise to well-defined opera-
tors on the quantum-field Hilbert space. In particular, Killing fields on spa-
tial sections give rise to unitary groups on the quantum-field Hilbert space,
and corresponding densely-defined self-adjoint generators. We construct the
Schrödinger representation using a method which involves localizing certain
integrals over the full manifold to integrals over a codimension-one subman-
ifold. This method is called sharp-time localization, and implies reflection
positivity.

Introduction

The present article presents a construction of a Euclidean quantum field
theory on time-independent, curved backgrounds. Earlier work on field the-
ories on curved space-time (Kay [33], Dimock [14], Bros et al. [7]) uses real-
time/Lorentzian signature and algebraic techniques reminiscent of P(ϕ)2
theory from the Hamiltonian point of view [22]. In contrast, the present
treatment uses the Euclidean functional integral [23] and Osterwalder-Schrader
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quantization [38, 39]. Experience with constructive field theory on Rd shows
that the Euclidean functional integral provides a powerful tool, so it is inter-
esting also to develop Euclidean functional integral methods for manifolds.

Euclidean methods are known to be useful in the study of black holes,
and a standard strategy for studying black hole (BH) thermodynamics is to
analytically continue time in the BH metric [10]. The present paper implies
a mathematical construction of scalar fields on any static, Euclidean black
hole background. The applicability of the Osterwalder-Schrader quantiza-
tion procedure to curved space depends on unitarity of the time transla-
tion group and the time reflection map which we prove (theorem 2.5). The
Osterwalder-Schrader construction has universal applicability; it contains
the Euclidean functional integral associated with scalar boson fields, a gen-
eralization of the Berezin integral for fermions, and a further generalization
for gauge fields [2]. It also appears valid for fields on Riemann surfaces [28],
conformal field theory [17], and may be applicable to string theory. The
present paper extends this construction to models on curved backgrounds.

Our paper has many relations with other work. Wald [42] studied met-
rics with Euclidean signature, although he treated the functional integral
from a physical rather than a mathematical point of view. Brunetti et al [8]
developed the algebraic approach (Haag-Kastler theory) for curved space-
times and generalized the work of Dimock [13]. They describe covariant
functors between the category of globally hyperbolic spacetimes with iso-
metric embeddings, and the category of ∗-algebras with unital injective
∗-monomorphisms.

The examples studied in this paper—scalar quantum field theories on
static space-times—have physical relevance. A first approximation to a full
quantum theory (involving the gravitational field as well as scalar fields)
arises from treating the sources of the gravitational field classically and
independently of the dynamics of the quantized scalar fields [6]. The weak-
ness of gravitational interactions, compared with elementary particle inter-
actions of the standard model, leads one to believe that this approximation
is reasonable. It exhibits nontrivial physical effects which are not present
for the scalar field on a flat spacetime, such as the Hawking effect [25] or
the Fulling-Unruh effect [41]. Density perturbations in the cosmic microwave
background (CMB) are calculated using scalar field theory on certain curved
backgrounds [35]. Further, Witten [45] used quantum field theory on Eu-
clidean anti-de Sitter space in the context of the AdS/CFT correspondence
[24, 36].

Some of the methods discussed here in Section 2 have been developed
for the flat case in lecture courses; see [27].

Notation and conventions

We use notation, wherever possible, compatible with standard references on
relativity [44] and quantum field theory [23]. We use Latin indices a, b =
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0 . . . d − 1 for spacetime indices, reserving Greek indices µ, ν = 1 . . . d − 1
for spatial directions. We include in our definition of ‘Riemannian manifold’
that the underlying topological space must be paracompact (every open
cover has a locally finite open refinement) and connected. The notation
L2(M) is used when M is a C∞ Riemannian manifold, and implicitly refers
to the Riemannian volume measure on M , which we sometimes denote by
dvol. Also U(H) denotes the group of unitary operators on H. Let G =
I(M) = Iso(M) denote the isometry group, while K is its Lie algebra, the
global Killing fields. For ψ a smooth map between manifolds, we use ψ∗ to
denote the pullback operator (ψ∗f)(p) = f(ψ(p)). The notation ∆ = ∆M

means the Laplace operator for the Riemannian metric on M .

1 Reflection Positivity

1.1 Analytic continuation

The Euclidean approach to quantum field theory on a curved background
has advantages since elliptic operators are easier to deal with than hy-
perbolic operators. To obtain physically meaningful results one must pre-
sumably perform the analytic continuation back to real time. In general,
Lorentzian spacetimes of interest may not be sections of 4-dimensional com-
plex manifolds which also have Riemannian sections, and even if they are,
the Riemannian section need not be unique. Thus, the general picture of ex-
tracting physics from the Euclidean approach is a difficult one where further
investigation is needed.

Fortunately, for the class of spacetimes treated in the present paper
(static spacetimes), the embedding within a complex 4-manifold with a Eu-
clidean section is guaranteed, and in such a way that Einstein’s equation is
preserved [11].

1.2 Time reflection

Reflection in Euclidean time plays a fundamental role in Euclidean quantum
field theory, as shown by Osterwalder and Schrader [38, 39].

Definition 1.1 (Time reflection) Let M be a Riemannian manifold. A
time reflection θ : M → M is an isometric involution which fixes point-
wise a smooth codimension-one hypersurface Σ. This means that θ ∈ Iso(M),
θ2 = 1 and θ(x) = x for all x ∈ Σ.

We now discuss time reflection for static manifolds, which is the example
that we will study in this paper.

Example 1.1 (Static manifolds) Suppose there exists a globally defined, static
Killing field ξ. Fix a hypersurface Σ ⊂M to which ξ is orthogonal. Define a
global function t : M → R by setting t = 0 on Σ, and otherwise define t(p)
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to be the unique number t such that φt(x) = p for some x ∈ Σ, where {φt}
is the one-parameter group of isometries determined by ξ. Finally, define θ
to map a point p ∈M to the corresponding point on the same ξ-trajectory
but with t(θ(p)) = −t(p). This defines a decomposition

M = Ω− ∪Σ ∪Ω+, θΩ± = Ω∓, θΣ = Σ. (1.1)

In past work [28], we have considered time-reflection maps which fall out-
side the bounds of example 1.1 ([28] applies to compact Riemann surfaces,
which cannot support Killing fields), but we will not do so here.

The time-reflection map given by a hypersurface-orthogonal Killing field
is not unique, but depends on a choice of the initial hypersurface, which we
fix. The initial hypersurface will be used to define time-zero fields. Reflection
of the Euclidean time coordinate t→ −t analytically continues to Hermitian
conjugation of e−itH .

1.3 Fundamental assumptions

Let C = (−∆+m2)−1 be the resolvent of the Laplacian, also called the free
covariance, where m2 > 0. Then C is a bounded self-adjoint operator on
L2(M). For each s ∈ R, the Sobolev space Hs(M) is a real Hilbert space,
which can be defined as completion of C∞(M) in the norm

‖f‖2s = 〈f, C−sf〉. (1.2)

We work with test functions in H−1(M). This is a convenient choice
for several reasons: the norm (1.2) with s = −1 is related in a simple way
to the free covariance, and further, Dimock [15] has given an elegant proof
of reflection positivity for Sobolev test functions. Another motivation is as
follows. Suppose we wish to prove that ϕ(h) is a bounded perturbation of
the free Hamiltonian H0 for a scalar field on Rd. The first-order perturbation
is

−〈Ω1,H0Ω1〉 = −1
2

∫
|ĥ(p)|2

ω(p)2
dp (1.3)

where we used Ω1 = −H−1
0 ϕ(h)Ω. Existence of (1.3) is equivalent to h ∈

H−1(Rd), so this is a natural condition for test functions. Therefore we
choose H−1(M) for the generalization to curved manifolds.

The Sobolev spaces give rise to a natural rigging, or Gelfand triple, and
various associated Gaussian measures [18, 40]. The inclusion Hs ↪→ Hs+k

for k > 0 is Hilbert-Schmidt, so the spaces

H∞ ≡
∞⋂
s=1

Hs(M) ⊂ H−1(M) ⊂
−∞⋃
s=−1

Hs(M) ≡ H−∞
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form a Gelfand triple, and H∞ is a nuclear space. There is a unique Gaussian
measure µ defined on the dual H−∞ with covariance C. This means that

S(f) ≡
∫
H−∞

eiΦ(f) dµ(Φ) = e−
1
2 〈f,Cf〉, f ∈ H∞.

Define
E := L2(H−∞, µ).

The space E is unitarily equivalent to Euclidean Fock space over H−1(M)
(see for example [40, Theorem I.11]). The algebra generated by monomials
of the form Φ(f1) . . . Φ(fn) is dense in E . This is a special case of a general
construction discussed in the reference.

Definition 1.2 (Standard domain) For an open set Ω ⊆ M , the stan-
dard domain in E corresponding to Ω is:

EΩ = span{eiΦ(f) : f ∈ H−1(M), supp(f) ⊂ Ω}.

Let EΩ denote the closure in E of EΩ.

Definition 1.2 refers to subspaces of E generated by functions supported
in an open set. This includes empty products, so 1 ∈ EΩ for any Ω. Of par-
ticular importance for Euclidean field theory is the positive-time subspace

E+ := EΩ+ ,

where the notation Ω+ refers to the decomposition (1.1). A linear operator
on E which maps E+ → E+ is said to be positive-time invariant.

1.4 Operator induced by a diffeomorphism

We will consider the effect which diffeomorphisms of the underlying space-
time manifold have on the Hilbert space operators which arise in the quan-
tization of a classical field theory. For f ∈ C∞(M) and ψ : M → M a
diffeomorphism, define

fψ ≡ ψ∗f = (ψ−1)∗f = f ◦ ψ−1. (1.4)

The reason for using ψ−1 here is so that Definition 1.3 gives a group repre-
sentation.

Definition 1.3 (Induced operator) Let ψ be a diffeomorphism, and A(Φ) =
Φ(f1) . . . Φ(fn) ∈ E a monomial. Define

Γ (ψ) : A : ≡ : Φ(f1ψ) · · ·Φ(fnψ) : . (1.5)

This extends linearly to a dense domain in E. We refer to Γ (ψ) as the
operator induced by the diffeomorphism ψ.
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Note that if ψ is an isometry, then (1.5) is equivalent to the definition
Γ (ψ)A ≡ Φ(f1ψ) . . . Φ(fnψ) without Wick ordering, as follows from (1.8)
below.

The induced operators Γ (ψ) are not necessarily bounded on E . In fact,
for a general diffeomorphism ψ, the operator ψ∗ may fail to be bounded on
L2(M) or H−1(M). If the Jacobian |dψ| satisfies uniform upper and lower
bounds, i.e.

(∃ c1, c2 > 0) c1 < sup
x∈M

|dψx| < c2. (1.6)

then (ψ−1)∗ is bounded on L2(M), but Γ (ψ) may still be unbounded on
E , because the operator norm of Γ (ψ) on the degree-n subspace of E may
fail to have a limit as n → ∞. In this situation, Γ (ψ) is to be regarded
as a densely-defined unbounded operator whose domain includes all finite
particle vectors.

If (ψ−1)∗ is a contraction on H−1(M), then Γ (ψ) is a contraction on E
(in particular, bounded). A special case of this is ψ ∈ Iso(M), which implies
that Γ (ψ) is unitary and ‖Γ (ψ)‖E = 1.

Lemma 1.1 (Naturalness property) Let ψ : M → M be a diffeomor-
phism, and consider the pullback ψ∗ acting on L2(M), with its Hermitian
adjoint (ψ∗)†. Then

det(dψ) = 1 ⇔ (ψ∗)† = (ψ−1)∗ ⇔ ψ is volume-preserving . (1.7)

Furthermore,

ψ ∈ Iso(M) ⇔ Γ (ψ) ∈ U(E) ⇔ [ψ∗,∆] = 0 ⇔ [ψ∗, C] = 0. (1.8)

The last part of (1.8) follows from [32, Theorem III.6.5], while the rest of
the statements in (1.7) and (1.8) are standard calculations. It follows that
Γ restricts to a unitary representation of G = Iso(M) on E .

For an open set Ω ⊂M , define

Iso(M,Ω) = {ψ ∈ Iso(M) : ψ(Ω) ⊂ Ω},

and similarly Diff(M,Ω). These are not subgroups of Diff(M) but they are
semigroups under composition. If ψ ∈ Diff(M,Ω) we say ψ preserves Ω.

Lemma 1.2 (Presheaf property) Let ψ : U → V be a diffeomorphism,
where U, V are open sets in M . Let EU , EV be the corresponding standard
domains (cf. Definition 1.2). Then

Γ (ψ)EU = EV .

In particular, if ψ : M → M preserves Ω ⊂ M , then Γ (ψ) preserves the
corresponding subspace EΩ ⊂ E.
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For maps ψ : U → V which are subset inclusions U ⊆ V , lemma 1.2
asserts that the association U → EU is a presheaf. It also follows from
lemma 1.2 that the mappings U → EU and ψ → Γ (ψ) define a covariant
functor from the category of open subsets of M with invertible, smooth
maps between them into the category of Hilbert spaces and densely defined
operators.

Lemma 1.2 implies that if ψ(Ω+) ⊂ Ω+ then Γ (ψ) is positive-time in-
variant. This is necessary but not sufficient for Γ (ψ) to have a quantization.
A sufficient condition is that Γ (ψ) and ΘΓ (ψ)†Θ both preserve E+, where
Θ = Γ (θ), as shown by Theorem 2.1.

1.5 Continuity results

Lemma 1.3 (Sobolev continuity) For the free covariance C = (−∆ +
m2)−1,

{f1, . . . , fn} 7−→ A(Φ) := Φ(f1) . . . Φ(fn) ∈ E
is continuous (H−1)n → E, where we take the product of the Sobolev topolo-
gies on (H−1)n.

Proof Since Φ is linear, it is sufficient to show that ‖A(Φ)‖E is bounded by
const.

∏
i ‖fi‖−1. As a consequence of the Gaussian property of the measure

dµC , one needs only bound the linear case. But

‖Φ(f)‖E =
∣∣∣ ∫

(Φ(f)Φ(f)) dµC
∣∣∣1/2 = ‖f‖−1 . (1.9)

Theorem 1.1 (Strong continuity) Let {ψn} be a sequence of orientation-
preserving isometries which converge to ψ in the compact-open topology.
Then Γ (ψn) → Γ (ψ) in the strong operator topology on B(E).

The proof of theorem 1.1 follows standard arguments in analysis. Let
us give a sense of how it is to be used. If all the elements of a certain
one-parameter group of isometries ψt are such that Γ (ψt) have bounded
quantizations, then t → Γ̂ (ψt) defines a one-parameter group of operators
on H (the quantum-field Hilbert space). In this situation, Theorem 1.1 jus-
tifies the application of Stone’s theorem. This picture is to be developed in
section 2.

1.6 Reflection positivity

Definition 1.4 With θ as in Definition 1.1, let Θ = Γ (θ) be the induced
reflection on E. A measure µ on H−∞ is said to be reflection positive if∫

Θ(F )F dµ ≥ 0 for all F ∈ E+ . (1.10)

A bounded operator T on L2(M) is said to be reflection positive if

supp f ⊆ Ω+ ⇒ 〈f, θTf〉L2(M) ≥ 0. (1.11)
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Reflection positivity for the measure µ is equivalent to the following
inequality for operators on E = L2(dµ):

0 ≤ Π+ΘΠ+

where Π+ : E → E+ is the canonical projection.
A Gaussian measure with mean zero and covariance C is reflection posi-

tive iff C is reflection positive in the operator sense, eqn. (1.11). An equiva-
lent condition is that for any finite sequence {fi} of real functions supported
in Ω+, the matrix Mij = exp 〈fi, θCfj〉 has no negative eigenvalues.

For Riemannian manifolds which possess an isometric involution whose
fixed-point set has codimension one, there is a simple potential-theoretic
proof of reflection positivity [12]. The relation between reflection positivity
and operator monotonicity under change of boundary conditions for the
Laplacian was discovered in [21]. A different proof of reflection positivity on
curved spaces was given by Dimock [15], based on Nelson’s proof using the
Markov property [37]. We give a third proof later in this paper based on
our sharp-time localization theorem. The result is summarized as follows.

Theorem 1.2 (Reflection positivity) Let M be a Riemannian manifold
with a time reflection as in Definition 1.1. Then the covariance C = (−∆+
m2)−1 and its associated Gaussian measure are reflection positive.

2 Osterwalder-Schrader Quantization and the Feynman-Kac
Formula

The Osterwalder-Schrader construction is a standard feature of quantum
field theory. It begins with a “classical” Euclidean Hilbert space E and leads
to the construction of a Hilbert space H = ΠE+, which is the projection
Π of the Euclidean space E+. It also yields a quantization map T 7→ T̂
from a classical operator T on E to a quantized operator T̂ acting on H.
In this section we review this construction, dwelling on the quantization
of bounded operators T on E that may yield a bounded or an unbounded
quantization T̂ , as well as the quantization of an unbounded operator T
on E . We give a variation of the previously unpublished treatment in [27],
adapted to curved space-time.

2.1 The Hilbert space

Define a bilinear form (A,B) on E+ by

(A,B) = 〈ΘA,B〉E for A,B ∈ E+ . (2.1)

Using self-adjointness of Θ on E , one can show that this form is sesquilinear,

(B,A) =
∫
ΘBA dµ =

( ∫
BΘAdµ

)∗
= (A,B) . (2.2)
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If θ is not an isometry, then Θ is non-unitary in which case Osterwalder-
Schrader quantization is not possible. Therefore, it is essential that θ ∈
Iso(M). The form (2.1) is degenerate, and has an infinite-dimensional ker-
nel which we denote N . Therefore (2.1) determines a nondegenerate inner
product 〈 , 〉H on E+/N , making the latter a pre-Hilbert space.

Definition 2.1 (Hilbert space) The (Osterwalder-Schrader) physical Hilbert
space H is the completion of E+/N , with inner product 〈 , 〉H. Let Π : E+ →
H denote the natural quotient map, a contraction mapping from A ∈ E+ to
Â := ΠA. There is an exact sequence:

0 // N incl. // E+
Π // // H // 0 .

2.2 Quantization of operators

Assume that T is a densely defined, closable operator on E with domain
D ⊂ E . Define T+ := ΘT ∗Θ, and assume there exists a subdomain D0 ⊂
D ∩ E+ on which T+ is defined and for which both

T : D0 → E+, and T+: D0 → E+ . (2.3)

Theorem 2.1 (Condition for quantization) Assume that D̂0 := Π(D0)
is dense in H. Condition (2.3) ensures that T has a quantization T̂ with
domain D̂0. Furthermore T̂ ∗ is defined, T̂ has a closure, and on D̂0, we
have:

T̂ ∗ = T̂+ . (2.4)

Proof First, we check that T̂ is well-defined. Suppose A ∈ N ∩ D0. Let
B ∈ E+ range over a set of vectors in the domain of ΘT ∗Θ such that the
image of this set under Π is dense in H. Then

0 = 〈(ΘT ∗ΘB) ˆ, Â〉H = 〈T ∗ΘB,A〉E = 〈ΘB, TA〉E = 〈B̂, T̂A〉H .

Thus TA ∈ N , and hence T is well-defined on D0/D0 ∩ N . To check (2.4)
is a routine calculation.

The main content of Theorem 2.1 can be expressed as a commutative
diagram. For bounded transformations, Theorem 2.1 simply means that if
T : E+ → E+ and the dotted arrow in the following diagram is well-defined,
then so are the two solid arrows:

0 // N incl. //

T

��

E+
Π //

ΘT∗Θ

��

H

T̂

��

// 0

0 // N incl. // E+
Π // H // 0
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Lemma 2.1 (Contraction property) Let T be a bounded transformation
on E such that T and ΘT ∗Θ each preserve E+. Then T̂ is a bounded trans-
formation on H and

‖T̂‖H ≤ ‖T‖E . (2.5)

Proof This proceeds by the multiple reflection method [23].

We now discuss some examples of operators satisfying the hypotheses of
Theorem 2.1.

Theorem 2.2 (Self-adjointness) Let U be unitary on E, and U(E+) ⊂
E+. If U−1Θ = ΘU then U admits a quantization Û and Û is self-adjoint.
(Do not assume U−1 preserves E+).

Proof The operator ΘU∗Θ = Θ2U = U preserves E+, so Theorem 2.1 ⇒ U
has a quantization Û . Self-adjointness of Û follows from eqn. (2.4).

Theorem 2.3 (Unitarity) Let U be unitary on E, and U±1(E+) ⊂ E+. If
[U,Θ] = 0 then U admits a quantization Û and Û is unitary.

Proof The operator ΘU∗Θ = U∗ = U−1 preserves E+ by assumption, so
U has a quantization. Also, Θ(U−1)∗Θ = U preserves E+, so U−1 also
has a quantization. Obviously, the quantization of U−1 is the inverse of Û .
Eqn. (2.4) implies that the adjoint of Û is the quantization of ΘU∗Θ =
U∗ = U−1.

Examples of operators satisfying the conditions of Theorems 2.2 and
2.3 come naturally from isometries on M with special properties. We now
discuss two classes of isometries, which give rise to self-adjoint and unitary
operators as above.

Example 2.1 (Reflected Isometries) An element ψ ∈ Iso(M) is said to be a
reflected isometry if

ψ−1 ◦ θ = θ ◦ ψ . (2.6)

If additionally ψ(Ω+) ⊆ Ω+ then Theorem 2.2 implies that Γ̂ (ψ) : H → H
exists and is self-adjoint. If ψ satisfies (2.6) then so does ψ−1; hence if
ψ−1(Ω+) ⊆ Ω+, then Γ (ψ−1) has a quantization and Γ̂ (ψ−1) is the inverse
of Γ̂ (ψ).

Example 2.2 (Reflection-Invariant Isometries) A reflection-invariant isom-
etry is an element ψ ∈ Iso(M) that commutes with time-reflection, ψθ =
θψ. It follows that [Γ (ψ), Θ] = 0. If ψ and ψ−1 both preserve Ω+ then
Γ (ψ±1)E+ ⊂ E+, and Theorem 2.3 implies that Γ̂ (ψ) : H → H is uni-
tary. The set of reflection-invariant isometries form a subgroup of the full
isometry group.
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2.3 Quantization domains

Quantization domains are subsets of Ω+ which give rise to dense domains
in H after quantization. This is important for the analysis of unbounded
operators on H. For example, an isometry which satisfies (2.6) may only
map a proper subset O ⊂ Ω+ into Ω+, and in this case Γ (ψ) is only defined
on a non-dense subdomain of E+. If O is a quantization domain, then ΠEO
may still be dense in H, and can serve as a domain of definition for Γ̂ (ψ).

Definition 2.2 A quantization domain is a subspace Ω ⊂ Ω+ with the
property that Π (EΩ) is dense in H.

Example 2.3 Perhaps the simplest quantization domain is a half-space lying
at times greater than T > 0,

O+,T =
{
x ∈ Rd : x0 > T

}
. (2.7)

Let D+,T = EO+,T
= Γ (ψT )E+ where ψT (x, t) = (x, t+ T ); then Π(D+,T )

is dense in H, as follows from Theorem 2.4.

Theorem 2.4 generalizes (2.7) to curved spacetimes, and also allows one
to replace the simple half-space O+,T with a more general connected subset
of Ω+.

Theorem 2.4 (Construction of quantization domains) Suppose ψ ∈
Iso(M,Ω+), i.e. O := ψ(Ω+) ⊂ Ω+. If [Γ (ψ), Θ] = 0 or Γ (ψ)Θ = ΘΓ (ψ−1)
(i.e. ψ is reflection-invariant or reflected) then O is a quantization domain.

Proof By lemma 1.2, we have

EO = Γ (ψ)E+ . (2.8)

Let Ĉ ∈ H be orthogonal to every vector Â ∈ Π(EO). Choose B ∈ E+ and
let A := Γ (ψ)B ∈ EO. Then

0 = 〈Ĉ, Â〉H = 〈Ĉ,Π(Γ (ψ)B)〉H = 〈ΘC,Γ (ψ)B〉E .

Since Γ (ψ)−1 is unitary on E , apply it to the inner product to yield

〈Γ (ψ−1)ΘC,B〉E = 0 (∀B ∈ E+).

Therefore Γ (ψ−1)ΘC is orthogonal (in E) to the entire subspace E+.
First, suppose that [Γ (ψ−1), Θ] = 0. Then we infer

0 = 〈ΘΓ (ψ−1)C,B〉E = 〈Γ̂ (ψ−1)Ĉ, B̂〉H (∀ B̂ ∈ Π(E+)),

i.e. Ĉ ∈ ker Γ̂ (ψ−1). Therefore,

(Π(EO))⊥ = ker Γ̂ (ψ−1) . (2.9)
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Since [Γ (ψ−1), Θ] = 0 then Theorem 2.3 implies that Γ̂ (ψ) is unitary, hence
the kernel of Γ̂ (ψ−1) is trivial and Π(EO) is dense in H. We have thus
completed the proof in this case.

Now, assume that Γ (ψ)Θ = ΘΓ (ψ−1). Example 2.1 implies that Γ̂ (ψ)
exists and is self-adjoint on H, and moreover (by the same argument used
above),

(Π(EO))⊥ = ker Γ̂ (ψ) .
If ψ = ψt where {ψs} is a one-parameter group of isometries, and if Γ̂ (ψt) is
a strongly continuous semigroup then by Stone’s theorem, Γ̂ (ψt) = e−tK for
K self-adjoint. Since e−tK clearly has zero kernel, the proof is also complete
in the second case.

Corollary 2.1 The set O+,T is a quantization domain.

The problem of characterizing all quantization domains appears to be
open.

2.4 Construction of the Hamiltonian and ground state

Theorem 2.5 (Time-translation semigroup) Let ξ = ∂/∂t be the time-
translation Killing field on the static spacetime M . Let the associated one-
parameter group of isometries be denoted φt : M → M . For t ≥ 0, U(t) =
Γ (φt) has a quantization, which we denote R(t). Further, R(t) is a well-
defined one-parameter family of self-adjoint operators on H satisfying the
semigroup law.

Proof Lemma 1.1 implies that U(t) is unitary on E , and it is clearly a one-
parameter group. Also,

φt ◦ θ = θ ◦ φ−t
and U(t)E+ ⊂ E+ for t ≥ 0, so this is a reflected isometry ; see Example 2.1.
Theorem 2.2 implies R(t) = Û(t) is a self-adjoint transformation on H for
t ≥ 0, which satisfies the group law

R(t)R(s) = R(t+ s) for t, s ≥ 0

wherever it is defined.

Theorem 2.6 (Hamiltonian and ground state) R(t) is a strongly con-
tinuous contraction semigroup, which leaves invariant the vector Ω0 = 1̂.
There exists a densely defined, positive, self-adjoint operator H such that

R(t) = exp(−tH), and HΩ0 = 0.

Thus Ω0 is a quantum-mechanical ground state.

Proof It is immediate that R(t)Ω0 = Ω0. The contraction property R(t) ≤
I follows from the multiple reflection method, as explained in [23]. The
remaining statements are consequences of Stone’s theorem.

The operator H is the quantum mechanical generator (in the Euclidean
picture) of translations in the direction ξ. When ξ = ∂/∂t, then H is called
the Hamiltonian.
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2.5 Feynman-Kac theorem

Theorem 2.7 (Feynman-Kac) Let Â, B̂ ∈ H, and let H be the Hamilto-
nian constructed in Theorem 2.6. Each matrix element of the heat kernel
e−tH is given by a Euclidean functional integral,

〈Â, e−tHB̂〉H =
∫
ΘAU(t)B dµ(Φ) . (2.10)

The right-hand side of (2.10) is the Euclidean path integral [16] of quan-
tum field theory. Mark Kac’ method [30, 31] for calculating the distribution
of the integral

∫ T
0
v(Xt)dt, where v is a function defined on the state space

of a Markov process X, gives a rigorous version of Feynman’s work, valid
at imaginary time.

In the present setup, (2.10) requires no proof, since the functional in-
tegral on the right-hand side is how we defined the matrix element on the
left-hand side. However, some work is required (even for flat spacetime,
M = Rd) to see that the Hilbert space and Hamiltonian given by this pro-
cedure take the usual form arising in physics. This is true, and was carried
out for Rd by Osterwalder and Schrader [38] and summarized in [23, Ch. 6].

Since H is positive and self-adjoint, the heat kernels can be analytically
continued t→ it. We therefore define the Schrödinger group acting on H to
be the unitary group

R(it) = e−itH .

Given a time-zero field operator, action of the Schrödinger group then de-
fines the corresponding real-time field.

For flat spacetimes in d ≤ 3 it is known [23] that Theorem 2.7 has
a generalization to non-Gaussian integrals, i.e. interacting quantum field
theories:

〈Â, e−tHV B̂〉H =
〈
ΘA, exp

(
−

∫ t

0

dt′
∫
dx V (Φ(x, t′))

)
Bt

〉
E

=
∫
ΘAe−S

V
0,t Bt dµ(Φ) . (2.11)

Construction the non-Gaussian measure (2.11) in finite volume can presum-
ably be completed by a straightforward extension of present methods, while
the infinite-volume limit seems to require a cluster expansion. Work is in
progress to address these issues for curved spacetimes.

2.6 Quantization of subgroups of the isometry group

Physics dictates that after quantization, a spacetime symmetry with p pa-
rameters should correspond to a unitary representation of a p-dimensional
Lie group acting on H. The group of spacetime symmetries for Euclidean
quantum field theory should be related to the group for the real-time the-
ory by analytic continuation; this was shown for flat spacetime by Klein
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and Landau [34]. For curved spacetimes, no such construction is known,
and due to the intrinsic interest of such a construction, we give further de-
tails, and show that the methods already discussed in this paper suffice to
give a unitary representation of the purely spatial symmetries on H.

Example 2.2 introduced reflection-invariant isometries. We now discuss
an important subclass of these, the purely spatial isometries, which are
guaranteed to have well-defined quantizations. We continue to assume we
have a static manifold M with notation as in Example 1.1. There is a natural
subgroup Gspace of G = Iso(M) consisting of isometries which map each
spatial section into itself. We term these purely spatial isometries. The
classic constructions [29] of finite-volume interactions in two dimensions
work on a cylinder M = S1 × R, in which case Gspace is the subgroup of
Iso(S1 × R) corresponding to rotations around the central axis.

Define the centralizer of θ in G as usual:

CG(θ) ≡ {φ ∈ G | φθ = θφ} .

Note that
Gspace ⊂ Iso(M,Ω+) ∩ CG(θ), (2.12)

and although the right hand side of (2.12) is not a subgroup, this is a
compact way of expressing that the elements are positive-time invariant
and null-invariant. Since Gspace ⊂ G as a Lie subgroup, gsp = Lie(Gspace)
is a subalgebra of K, the Lie algebra of global Killing fields.

Consider the restriction of the unitary representation Γ to the subgroup
Gspace. By a standard construction, the derivative DΓ is a unitary Lie
algebra representation of gsp on E , for which E+ is an invariant subspace.
The latter property is crucial; if E+ is not an invariant subspace for an
operator, then that operator does not have a quantization.

As with many aspects of Osterwalder-Schrader quantization, a commu-
tative diagram is helpful:

Gspace
Γ //

Lie

��

U(E)

Lie

��
gsp

DΓ
// u(E)

(2.13)

Note that U(E) is an infinite-dimensional Lie group. Further, there are del-
icate analytic questions involving the domains of the symmetric operators
in u(E). In the present paper we investigate only the algebraic structure.

By Theorem 2.3, each one-parameter unitary group U(t) on E+ coming
from a one-parameter subgroup of Gspace has a well-defined quantization
Û(t) which is a unitary group on H. The methods of Section 1.5 establish
strong continuity for these unitary groups, so their generators are densely-
defined self-adjoint operators as guaranteed by Stone’s theorem.

Suppose that [X,Y ] = Z for three elements X,Y, Z ∈ gsp. Let X̂ :
H → H be the quantization of DΓ (X), and similarly for Y and Z. Our
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assumptions guarantee that [DΓ (X), DΓ (Y )] = DΓ (Z) is null-invariant,
therefore we have

[X̂, Ŷ ] = Ẑ, (2.14)

valid on the domain of vectors in H where the expressions are defined.
One-parameter subgroups coming from Gspace always admit unitary rep-

resentations on H, but for other subgroups of G, the analogous theory is
much more subtle. Since any element of K is a vector field acting on func-
tions as a differential operator, it is local (does not change supports) and
hence positive-time invariant, so quantization applied directly to infinitesi-
mal generators may be possible. There, one runs into delicate domain issues.
A discussion of the domains of some self-adjoint operators obtained by this
procedure was given in Section 2.3, and some variant of this could possibly
be used to treat the domains of the quantized generators.

When applied to isometry groups, Osterwalder-Schrader quantization of
operators involves the procedure of taking the derivative of a representa-
tion, applied to the infinite-dimensional group U(E). Thus, it is not surpris-
ing that it is functorial, adding to its intrinsic mathematical interest. These
connections are likely to lead to an interesting new direction in representa-
tion theory, especially for noncompact groups.

3 Variation of the Metric

3.1 Metric dependence of matrix elements in quantum field theory

We wish to obtain rigorous analytic control over how quantum field theory
on a curved background depends upon the metric.

Definition 3.1 (Stable family) Let Mλ denote the Riemannian manifold
diffeomorphic to R× S, endowed with the product metric

ds2λ := dt2 +Gµν(λ)dxµdxν , (3.1)

where G(λ) is a metric on S, and Gµν(λ) depends smoothly on λ ∈ R. We
refer to a family {Mλ}λ∈R satisfying these properties as a stable family. We
denote the full metric (3.1) as g(λ) or gλ.

For a stable family, it is clearly possible to choose Ω±, Σ in a way that
is independent of λ. Let t denote the coordinate which is defined so that
t|Σ = 0 and ξ = ∂/∂t. Then the data (Ω−, Σ,Ω+, ξ, t) is constant in λ.

However, the Hilbert spaces L2(Mλ), the covariance

C(λ) = Cλ :=
(
−∆g(λ) +m2

)−1
,

and the test function space H−1(Mλ) all depend upon λ, as does the Gaus-
sian measure described in section 1.3. These dependences create many sub-
tleties in the quantization procedure. In particular, the usual theory of
smooth or analytic families of bounded operators does not apply to the
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family of operators λ → C(λ), because if λ 6= λ′ then C(λ) and C(λ′) act
on different Hilbert spaces. It is clearly of interest to have some framework
in which we can make sense out of the statement “λ → C(λ) is smooth.”
More generally, we would like a framework to analyze the λ-dependence of
the Osterwalder-Schrader quantization.

Our approach to this set of problems is based on the observation that,
for a stable family, there exist test functions f : M → R which are elements
of H−1(Mλ) for all λ. For example,

C∞c (M) ⊂ H−1 :=
⋂
λ∈R

H−1(Mλ) . (3.2)

Such test functions can be used to give meaning to formally ill-defined
expressions such as ∂Cλ/∂λ. To give meaning to the naive expression

∂Cλ
∂λ

f := lim
ε→0

1
ε

(Cλf − Cλ+εf) , (3.3)

we must specify the topology in which the limit is to be taken. Suppose that
f ∈ C∞c as before. A natural choice is the topology of L2(Mλ), but some
justification is necessary in the noncompact case. Clearly Cλf ∈ L2(Mλ),
but it is not clear that Cλ+εf also determines an element of L2(Mλ). After
all, the covariance operators are nonlocal, and Cλ+εf generally does not
have compact support (unless of course M itself is compact).

In order that the limit (3.3) can be taken in the topology of L2(Mλ),
it is necessary and sufficient that ∃ ε1 > 0 such that Cλ+εf ∈ L2(Mλ)
for all ε < ε1. In other words, the limit (3.3) makes sense iff F (ε) ≡∫
M
|Cλ+εf |2

√
|gλ| dx < ∞ for all ε < ε1. Since obviously F (0) < ∞, it

suffices to show F (ε) is continuous at ε = 0. If we write the expressions in
terms of coordinate charts and assume f > 0, then we can translate the
problem into one of classical analysis. Indeed,

F (ε) =
∫
M

dx
√
|gλ(x)|

(∫
supp f

dy
√
|gλ+ε(y)|Cλ+ε(x, y)f(y)

)2

. (3.4)

Thus the condition for differentiability of F (ε) at ε = 0 becomes one of “dif-
ferentiating under the integral,” which can be treated by standard methods.
The overall conclusion: if F (ε) is continuous at ε = 0, then (3.3) makes sense.
Anticipating what is to come, this condition implies that (3.7) also makes
sense.

We now return to the study of the full quantum theory on Mλ. Define

Eλ := L2(dµλ)
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where dµλ is the unique Gaussian probability measure associated to C(λ)
by Minlos’ theorem.1 If f ∈ H−1, then

Af,λ = : e−iΦ(f) :C(λ) (3.5)

defines a canonical element of Eλ for each λ. Then

〈Af,λ, Ag,λ〉E,λ = exp
(
〈f, Cλg〉L2(Mλ)

)
. (3.6)

Lemma 3.1 (Smoothness of covariance) Assume that {Mλ}λ∈R is a
stable family. Then 〈f, C(λ)g〉L2(Mλ) is a smooth function of λ, for any
f, g ∈ C∞c (M).

Proof The integral 〈f, C(λ)g〉L2(Mλ) =
∫
M
fCλg

√
|gλ| dx is localized over

the support of f , which is compact. The dominated convergence theorem
shows that we can interchange ∂/∂λ with the integral.

It follows immediately that the matrix element (3.6) on E of the canon-
ical elements Af,λ and Ag,λ is a smooth function of the parameter λ.

When we change λ, the measure dµλ follows a path in the space of all
Gaussian measures. This change in the measure can be controlled through
operator estimates on the covariance. Using formula 9.1.33 from [23, p. 208]
we have:

d

dλ

∫
A dµλ =

1
2

∫
(∆dC/dλA) dµλ . (3.7)

In particular, if C(λ) is smooth then so is
∫
A dφC(λ). Here we must interpret

dC/dλ as in the discussion following (3.3).
The null space Nλ of OS quantization also depends on the metric, as we

discuss presently. When it is necessary to distinguish the time direction, we
denote local coordinates by x = (x, t). The subspace of Nλ corresponding
to monomials in the field is canonically isomorphic to the space of test
functions f such that2∫

M

f(x,−t) (Cλ f) (x, t)
√
|gλ(x)| dx = 0 . (3.8)

All of the quantities in the integrand (3.8) which depend on λ do so smoothly.
Assuming the applicability of dominated convergence arguments similar to
those used above, it should be possible to show that Nλ varies continuously
in the Hilbert Grassmannian, but we do not address this here.

For each λ, the Osterwalder-Schrader theory gives unambiguously a
quantization

H(λ) ≡ E+,λ/Nλ.
1 As before, E+,λ = span

˘
eiΦ(f) | f ∈ H−1(Mλ), supp(f) ⊂ Ω+

¯
, with com-

pletion
E+,λ = E+,λ .

Also define Eλ to be the (incomplete) linear span of eiΦ(f) for f ∈ H−1(Mλ).
2 For integrals such as this one, we can factorize the Laplacian as in Sec. 4.
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Theorem 3.1 (Smoothness of matrix elements in H) Assume that
{Mλ}λ∈R is a stable family. Define the canonical element Af,λ as in (3.5).
Then

λ→ 〈Âf,λ, Rλ(t)Âg,λ〉H(λ)

is smooth.

Proof Calculate 〈Â, Rλ(t)B̂〉H(λ) = exp 〈θf, (Cλh) ◦ φ−1
λ,t〉, where φλ,t is the

time t map of the Killing field ∂/∂t on the spacetime Mλ. Since f has
compact support, the dominated convergence theorem applies to the integral
〈θf, (Cλh) ◦ φ−1

λ,t〉.

One class of examples which merits further consideration is the class
formulated on M = Rd+1 with ds2 = dt2 + g(λ)ijdxidxj , i, j = 1 . . . d.
Assume that G(λ)ij depends analytically on λ ∈ C, and to order zero it is
the flat metric δij . Theorem 3.1 implies that the matrix elements of H have
a well-defined series expansion about λ = 0, and we know that precisely at
λ = 0 they take their usual flat-space values.

3.2 Stably symmetric variations

It is of interest to extend the considerations of the previous section to the
quantizations of symmetry generators. For this we continue to consider vari-
ations of an ultrastatic metric, as in equation (3.1). One important aspect
of the quantization that is generally not λ-invariant is the symmetry struc-
ture of the Riemannian manifold. We assume M = R×M ′, where M ′ is a
Riemannian manifold with metric gµν(λ). In this section we study a special
case in which the perturbation does not break the symmetry. Let Kλ denote
the algebra of global Killing fields on (M ′, g(λ)). In certain very special
cases we may have the following.

Definition 3.2 (Stable symmetry) The family of metrics λ → g(λ) is
said to be stably symmetric over the subinterval I ⊂ R if for each λ ∈ I,
there exists a basis {ξi(λ) : 1 ≤ i ≤ n} of Kλ, and the family of bases can be
chosen in such a way that λ→ ξi(λ) is smooth ∀ i.

Equivalently, the condition of stable symmetry is that Kλ = KF (Mλ)
gives a rank n vector bundle over R (or some subinterval thereof) and we
have chosen a complete set {ξi : i = 1 . . . n} of smooth sections.

Example 3.1 (curvature variation) The most general constant-curvature hy-
perbolic metric on H has arc length

ds =
c

=(z)
|dz| (3.9)

and curvature −c−2. Consider the spacetime R × H(c) where H(c) is the
upper half-plane with metric (3.9). Variation of the curvature parameter c
satisfies the assumptions of definition 3.2.
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Example 3.2 (ADM mass, charge, etc.) Many spacetimes considered in physics
seem to have the property of stable symmetry under variation of param-
eters, at least for certain ranges of those parameters. For the Euclidean
continuation of the Reissner-Nordström black hole, where λ plays the role
of either mass m or charge e, one may observe that the assumptions of def-
inition 3.2 hold. However, the Euclidean RN metrics are not ultrastatic as
was assumed above. Therefore, it would be interesting to extend the anal-
ysis of this section to static metrics of the form F (λ, x)dt2 + G(λ, x)dx2,
where x is a d− 1 dimensional coordinate.

For each i, λ, the Killing field ξi(λ) gives rise to a one-parameter group
of isometries on M , which we denote by φi,λ,x ∈ Iso(M), where x ∈ R is
the flow parameter. These flows act on the spatial section of M for each
fixed time; they are purely spatial isometries in the sense considered above.
Therefore, the map

Ti(λ, x) = Γ (φi,λ,x) : E −→ E . (3.10)

is positive-time invariant, null-invariant, and has a unitary quantization

T̂i(λ, x) : H −→ H . (3.11)

None of the following constructions depend on i, so for the moment
we fix i and suppress it in the notation. Since each T (λ, x) depends on a
Killing field ξ, the first step is to determine how the Killing fields vary as a
function of the metric. Since the Killing fields are solutions to a first-order
partial differential equation, one possible method of attack could proceed
by exploiting known regularity properties of solutions to that equation. If
one were to pursue that, some simplification may be possible due to the
fact that a Killing field is completely determined by its first-order data at
a point. We obtain a more direct proof.

The T operators depend on the Killing field through its associated one-
parameter flow. For each fixed λ, the construction gives a one-parameter
subgroup (in particular, a curve) in Gspace. If we vary λ ∈ [a, b], we have
a free homotopy between two paths in Gspace. Each cross-section of this
homotopy, such as λ → φλ,x(p) with the pair (x, p) held fixed, describes a
continuous path in a particular spatial section of M .

Theorem 3.2 Assume stable symmetry and define T (λ, x) as in (3.10).
Then for each x (held fixed), the map

λ 7−→ T̂ (λ, x) ∈ U(H)

is a strongly continuous operator-valued function of λ.

Proof First, we claim that λ → φλ,x is continuous in the compact-open
topology. The latter follows from standard regularity theorems for solutions
of ODEs, since we have assumed λ → ξ(λ) is smooth, and φλ,x(p) is the
solution curve of the differential operator ξ(λ)p. Theorem 1.1 implies that
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Γ (φλ,x) ∈ U(E) is strongly continuous with respect to λ. By theorem 2.1,
the embedding of bounded operators on E into B(H) is norm-continuous.
Composing these continuous maps gives the desired result.

4 Sharp-time Localization

The goal of this section is to establish an analog of [23, Theorem 6.2.6]
for quantization in curved space, and to show that the Hilbert space of
Euclidean quantum field theory may be expressed in terms of data local to
the zero-time slice. This is known as sharp-time localization. We first define
the type of spacetime to which our results apply.

Definition 4.1 A quantizable static spacetime is a complete, connected
Riemannian manifold M with a globally defined (smooth) Killing field ξ
which is orthogonal to a codimension one hypersurface Σ ⊂ M , such that
the orbits of ξ are complete and each orbit intersects Σ exactly once.

Under the assumptions for a quantizable static spacetime, but with
Lorentz signature, Ishibashi and Wald [26] have shown that the Klein-
Gordon equation gives sensible classical dynamics, for sufficiently nice initial
data. These assumptions guarantee that we are in the situation of Definition
1.1.

The main difficulty in establishing sharp-time localization comes when
trying to prove the analog of formula (6.2.16) of [23] in the curved space
case, which would imply that the restriction to E0 of the quantization map
is surjective. The proof given in [23] relies on the formula (6.2.15) from
Prop. 6.2.5, and it is the latter formula that we must generalize.

4.1 Localization on flat spacetime

The Euclidean propagator on Rd is given explicitly by the momentum rep-
resentation

C(x; y) = C(x− y) =
1

(2π)d

∫
Rd

1
p2 +m2

e−ip·(x−y) dp ,

for x, p ∈ Rd. Let f = f(x) denote a function on Rd−1, and define

ft(x, t′) = f(x)δ(t− t′) .

Theorem 4.1 (Flat-space localization) Let M = Rd with the standard
Euclidean metric. Then

〈ft, Cgs〉L2(Rd) =
〈
f,

1
2µ

e(t−s)µg
〉
L2(Rd−1)

where µ is the operator with momentum-space kernel µ(p) =
(
p 2 +m2

)1/2.
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4.2 Splitting the Laplacian on static spacetimes

Consider a quantizable static space-time M , defined in Definition 4.1. Use
Latin indices a, b, etc. to run from 0 to d − 1 and Greek indices µ, ν =
1 . . . d− 1. Denote the spatial coordinates by

x = (x1, . . . , xd−1) = (xµ) ,

and set t = x0. Write g in manifestly static form,

gab =
(
F 0
0 Gµν

)
, with inverse gab =

(
1/F 0

0 Gµν

)
. (4.1)

where F and G depend only on x, and not on t = x0. It is then clear that

G := det(gab) = FG, where G = det(Gµν) . (4.2)

It follows that g0ν = gµ0 = 0, and g00 = F−1 = g00
−1, does not depend

upon time. Using the formula, ∆f = G−1/2∂a
(
G1/2 gab∂bf

)
, the Laplacian

on M may be seen to be

∆M =
1
F
∂2
t +Q, where (4.3)

Q :=
1√
G
∂µ

(√
GGµν ∂ν

)
. (4.4)

The operator Q is related to the Laplacian ∆Σ for the induced metric on
Σ. Applying the product rule to (4.3) yields

Q =
1
2
∂α(lnF )Gαβ∂β +∆Σ . (4.5)

Note that a formula generalizing (4.5) to “warped products” appears in
Bertola et.al. [5].

In order that the operator µ = (−Q + m2)1/2 exists for all m2 > 0,
we require that −Q is a positive, self-adjoint operator on an appropriately-
defined Hilbert space. The correct Hilbert space is

KΣ := L2(Σ,
√
G dx) . (4.6)

Here
√
G dx denotes the Borel measure on Σ which has the indicated form

in each local coordinate system, and G = FG as in eq. (4.2).
Spectral theory of the operator −Q considered on KΣ is mathematically

equivalent to that of the “wave operator” A defined by Wald [42, 43] and
Wald and Ishibashi [26]. In those references, the Klein-Gordon equation has
the form (∂2

t + A)φ = 0. The relation between Wald’s notation and ours is
that Q = −(1/F )A −m2, and Wald’s function V is our F 1/2. As pointed
out by Wald, we have the following,

Theorem 4.2 (Q is symmetric and negative) Let (M, gab) be a quan-
tizable static spacetime. Then −Q is a symmetric, positive operator on the
domain C∞c (Σ) ⊂ KΣ.
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Proof It is easy to see that Q is symmetric on C∞c (Σ) with the metric of
KΣ ; it remains to show −Q ≥ 0 on the same domain. Using (4.4), the
associated quadratic form is

〈f, (−Q)f〉KΣ
= −

∫
f

1√
G
∂µ

(√
GGµν∂νf

) √
G dx

=
∫
‖∇f‖2G

√
G dx ≥ 0 .

where we used integration by parts to go from the first line to the second.

4.3 Hyperbolic space

It is instructive to calculate Q in the explicit example of H d, often called
Euclidean AdS in the physics literature because its analytic continuation is
the Anti-de Sitter spacetime. The metric is

ds2 = r−2
d−1∑
i=0

dx2
i , r = xd−1 .

The hyperbolic Laplacian in d dimensions is (see for instance [4]):

∆H d = (2− d)r
∂

∂r
+ r2∆Rd . (4.7)

Any vector field ∂/∂xi where i 6= d− 1 is a static Killing field. We have set
up the coordinates so that it is convenient to define t = x0 as before, and
we can quantize in the t direction.

Comparing (4.4) with (4.7), we find that F = r−2 and

Q = (2− d)r
∂

∂r
+ r2

d−1∑
i=1

∂2

∂x2
i

= −r ∂
∂r

+∆H d−1 , (4.8)

which matches (4.5) perfectly. We return to this example spacetime in Ap-
pendix A, where we calculate its Green function, and discuss the analytic
continuation.

4.4 Curved space localization

To generalize Theorem 4.1 to curved space, choose static coordinates x, t
near the time-zero slice Σ. If f = f(x) is a function on the slice Σ, we define

ft(x, t′) = f(x)δ(t− t′),

which is a distribution on the patch of M covered by this coordinate chart.
For the moment, we assume that this coordinate patch is the region of
interest. By equation (4.4), we infer that the integral kernel C(x, y) of the
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operator C = (−∆ + m2)−1 is time-translation invariant, so that we may
write

C(x, y) = C(x,y, x0 − y0) .

In order to apply spectral theory to Q, we choose a self-adjoint extension
of the symmetric operator constructed by theorem 4.2. For definiteness,
we may choose the Friedrichs extension, but any ambiguity inherent in the
choice of a self-adjoint extension will not enter into the following analysis.
We denote the self-adjoint extension also by Q, which is an unbounded
operator on KΣ . The following is a generalization of Theorem 4.1 to curved
space.

Theorem 4.3 (Localization of sharp-time integrals) Let M be a quan-
tizable static spacetime (definition 4.1). Then:

〈ft, Cgs〉M =
〈
f,

(
F 1/2 e

−|t−s|ω

2ω
F 1/2

)
g

〉
KΣ

, (4.9)

where µ =
(
−Q+m2

)1/2 and ω =
(√

Fµ2
√
F

)1/2

. Hence C is reflection

positive on L2(M).

Proof Because M was assumed to be a quantizable static spacetime, F =
〈ξ, ξ〉Σ ≥ 0. Moreover, if F (p) = 0 then ξp = 0, for any p ∈ Σ. A non-trivial
Killing field cannot vanish on an open set, so the zero-set of F has measure
zero in Σ. From this we infer that multiplication by the function F−1 de-
fines a (possibly-unbounded) but densely-defined self-adjoint multiplication
operator on KΣ .

For simplicity of notation, assume f is real-valued. Perform a partial
Fourier transform with respect to the time variable:

〈ft, Cgs〉M =
∫
f(x)

(
1

2π

∫
dE

eiE(t−s)

F−1E2 −Q+m2
g

)
(x)

√
G dx . (4.10)

Define µ :=
(
−Q+m2

)1/2
, where the square root is defined through the

spectral calculus on KΣ . As a consequence of theorem 4.2, µ and ω are
positive, self-adjoint operators on KΣ . The integrand of (4.10) contains the
operator:

eiE(t−s)

F−1E2 + µ2
=

eiE(t−s)

F−1/2
(
E2 + F 1/2µ2F 1/2

)
F−1/2

= F 1/2 e
iE(t−s)

E2 + ω2
F 1/2 .

We next establish that ω is invertible. Since µ2 > εI, where ε > 0, we
have

ω2 =
√
Fµ2

√
F > εF

and therefore,

ω−2 <
(√

Fµ2
√
F

)−1

<
1
εF

.
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Since 1/F is a densely defined operator on KΣ , it follows that ω2 (hence ω)
is invertible. For λ > 0, ∫

eiEτ

E2 + λ2
dE =

πe−|τ |λ

λ
. (4.11)

Decompose the operator ω according to its spectral resolution, with ω =∫
λ dPλ and I =

∫
dPλ the corresponding resolution of the identity, and

apply (4.11) in this decomposition to conclude∫
eiE(t−s)

F−1E2 + µ2
dE = F 1/2πe

−|t−s|ω

ω
F 1/2 (4.12)

Inserting (4.12) into (4.10) gives

〈ft, Cgs〉M =
∫
Σ

(
F 1/2f

)
(x)

(
e−|t−s|ω

2ω
(F 1/2g)

)
(x)

√
G dx

=
〈
f, F 1/2 e

−|t−s|ω

2ω
F 1/2g

〉
KΣ

, (4.13)

also demonstrating reflection positivity.

The operator ω2 may be calculated explicitly if the metric is known,
and is generally not much more complicated than Q. For example, using
the conventions of sec. 4.3, one may calculate ω2 for H d:

ω2 = −
d−1∑
i=1

∂2
i + d r−1∂r + (m2 − d)r−2 .

For H 2, the eigenvalue problem ω2f = λf becomes a second-order ODE
which is equivalent to Bessel’s equation. The two linearly independent so-
lutions are

r3/2J 1
2

√
4m2+1

(
r
√
λ
)

and r3/2Y 1
2

√
4m2+1

(
r
√
λ
)
.

The spectrum of ω2 on H 2 is then [0,+∞).
Given a function f on Σ, we obtain a distribution ft supported at time

t as follows:
ft(x, t′) = f(x)δ(t− t′).

It may appear that this is not well-defined because it depends on a coordi-
nate. However, given a static Killing vector, the global time coordinate is
fixed up to an overall shift by a constant, which we have determined by the
choice of an orthogonal hypersurface where t = 0. Thus a pair (p, t) where
p ∈ Σ and t ∈ R uniquely specify a point in M .

Theorem 4.4 (Localization of H) Let M be a quantizable static space-
time. Then the vectors exp(iΦ(f0)) lie in E+, and quantization maps the
span of these vectors isometrically onto H.
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Proof Since E+ is the closure of the set E+ of vectors exp(iΦ(f)) with
supp(f) ⊂ Ω+, it follows that any sequence in E+ which converges in the
topology of E has its limit in E+. The L2 norm in E ,∫ ∣∣∣eiΦ(f) − eiΦ(g)

∣∣∣2 dµC(Φ) = 2(1− e−
1
2‖f−g‖−1),

is controlled in terms of the norm ‖ ‖−1 on Sobolev space, which is the space
of test functions. This will give us the first part of the theorem.

If t > 0, then there exists a sequence of smooth test functions {gn} with
compact, positive-time support such that

lim
n→∞

gn = ft

in the Sobolev topology, hence exp(iΦ(ft)) ∈ E+. Define the time-t subspace
Et ⊂ E+ to be the subspace generated by vectors of the form exp(iΦ(ft)).
By taking the t → 0 limit, we see that exp(iΦ(f0)) ∈ E+ and the first part
is proved.

It is straightforward to see that the quantization map Π(A) ≡ Â is
isometric when restricted to vectors of the form exp(iΦ(f0)), since the time-
reflection θ acts trivially on these vectors. It remains to see that the restric-
tion to such vectors is onto H. Then we wish to prove

(E0)ˆ ⊃
( ⋃
t>0

Et
)

ˆ . (4.14)

First, let us see why (4.14), if true, finishes the proof. We must show
that

⋃
t>0 Et is dense in E+. Of course, E+ is spanned by polynomials in

classical fields of the form

Φ(f) =
∫
Φ(x, t)f(x, t)

√
G dxdt .

Write the t integral as a Riemann sum:

Φ(f) = lim
N→∞

N∑
i=1

(δt)i Φ ((fi)ti) , (4.15)

where Φ ((fi)ti) =
∫
Φ(x, ti)fi(x)

√
G dx, (4.16)

and where fi(x) = f(x, ti).
Eqn. (4.15) represents Φ(f) as a limit of linear combinations of elements

Φ(fti) ∈ Eti . A similar argument applies to polynomials A(Φ) of classical
fields, and to L2 limits of such polynomials. Thus

⋃
t>0 Et is dense in E+.

Then (4.14) implies (E0)ˆ is also dense in E+.
Equation (4.14) is proved by means of the following identity:

〈Â, : exp(i Φ(ft)) : ˆ〉H = 〈Â, : exp(i Φ(f t0)) : ˆ〉H (4.17)
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where

f t := (F−1/2e−tωF 1/2)f, (4.18)

where f is a function on Σ, and hence so is f t. Thus

f t0(p, t′) = δ(t′)(F−1/2e−tωF 1/2f)(p) for p ∈ Σ .

To prove (4.17), we first suppose A = : eiΦ(gs) : where g ∈ TΣ and s > 0.
Then

〈Â, : exp(iΦ(ft)) : ˆ〉H = 〈 : eiΦ(θgs) : , : eiΦ(ft) : 〉E
= exp 〈θgs, Cft〉M

= exp
〈
g, F 1/2 e

−(t+s)ω

2ω
F 1/2f

〉
KΣ

(4.19)

where we have used localization (Theorem 4.3) in the last line.
Computing the right side of (4.17) gives

〈
: eiΦ(θgs) : , : eiΦ(ft

0) :
〉
E = exp

〈
θgs, C(f t0)

〉
M

= exp
〈
g, F 1/2 e

−sω

2ω
F 1/2f t

〉
KΣ

= exp
〈
g, F 1/2 e

−(t+s)ω

2ω
F 1/2f

〉
KΣ

= (4.19).

We conclude that eqns. (4.17)-(4.18) hold true for A = : eiΦ(gs) : . We then
infer the validity of (4.17) for all A in the span of

⋃
t>0 Et by linear combi-

nations and limits.
Equation (4.17) says that for every vector v in a set that is dense in H,

there exists v′ ∈ (E0)ˆ such that L(v) = L(v′) for any linear functional L
on H. If v 6= v′ then we could find some linear functional to separate them,
so they are equal. Therefore (E0)ˆ is a dense set, completing the proof of
Theorem 4.4.

Theorem 4.4 implies that the physical Hilbert space is isometrically iso-
morphic to E0, and to an L2 space of the Gaussian measure with covariance
which can be found by the t, s→ 0 limit of (4.19), to be:

H = L2
(
N∗
d−1, dφC

)
, where C = F 1/2 1

2ω
F 1/2 , (4.20)

and Nd−1 denotes the nuclear space over the (d−1)-dimensional slice. Com-
pare (4.20) with [23], eqn. (6.3.1). By assumption, 0 lies in the resolvent set
of ω, implying that C is a bounded, self-adjoint operator on KΣ .
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4.5 The ϕ bound

Here we prove that an estimate known in constructive field theory as the
Glimm-Jaffe ϕ bound (see [20]) is also true for curved spacetimes.

Theorem 4.5 (ϕ bound) Let T > 0. There exists a constant M such that〈
Â, e−(H0+ϕ(h))T Â

〉
H
≤ exp

(
T‖h‖2GM

)
‖Â‖2H, (4.21)

where ‖h‖G = 〈h,Gh〉1/2 and G is the resolvent of Q at −m2.

Proof Apply the Schwartz inequality (for the inner product on H) n times,
to obtain〈

Â, e−(H0+ϕ(h))T Â
〉
H
≤ ‖Â‖H

〈
Â, e−2T (H0+ϕ(h))Â

〉1/2

H

≤ ‖Â‖2−2−(n−1)

H

〈
Â, e−2nT (H0+ϕ(h))Â

〉2−n

H
.

Apply the Feynman-Kac formula to the very last expression, to obtain〈
Â, e−(H0+ϕ(h))T Â

〉
H
≤ ‖Â‖2−2−(n−1)

H

〈
ΘA, e−

R 2nT
0 Φ(h,t)dtU(2nT )A

〉2−n

E
.

We cannot take the n→∞ limit at this point, because the object depends
on A. It suffices to establish the desired result for A in a dense subspace, so
take A ∈ L4 ∩ E+. We now use the Schwartz inequality on E as well as the
fact that Θ is unitary on E , to obtain〈
Â, e−(H0+ϕ(h))T Â

〉
H

≤ ‖Â‖2−2−(n−1)

H ‖A‖2
−n

E

〈
A, e2

R 2nT
0 Φ(h,t)dtA

〉2−(n+1)

E

Now Hölder’s inequality with exponents 1
4 + 1

4 + 1
2 = 1 implies

〈Â, e−(H0+ϕ(h))T Â〉H

≤ ‖Â‖2−2−(n−1)

H ‖A‖2
−n

E ‖A‖2
−n

L4

( ∫
e4

R 2nT
0 Φ(h,t)dtdµ0

)2−n−2

. (4.22)

Up to this point, the argument applies to a general measure dµ on path
space. Now assume that the measure is Gaussian. The function f = 4h(x)χ[0,2nT ](t)

has the desirable property that Φ(f) = 4
∫ 2nT

0
Φ(h, t)dt, so the Gaussian in-

tegral in (4.22) equals S(if) = e〈f,Cf〉/2. Therefore,〈
Â, e−(H0+ϕ(h))T Â

〉
H
≤ ‖Â‖2−2−(n−1)

H ‖A‖2
−n

E ‖A‖2
−n

L4 S(if)2
−n−2

. (4.23)

For H1 and H2 self-adjoint operators with 0 ≤ H1 ≤ H2, we have
(H2 + a)−1 ≤ (H1 + a)−1 for any a > 0. By theorem 4.2, −Q ≥ 0, so take
H1 = −Q, and H2 = −(1/F )∂2

t −Q. We conclude3

C = (−∆+m2)−1 ≤ (−Q+m2)−1 ≡ G.

3 Compare this with the analogous estimate valid in Rd, C ≤ (−∇2
x + m2)−1,

which may be proved by a Fourier transform of the resolvent kernel.



28 Arthur Jaffe, Gordon Ritter

Since ker(G) = {0}, G determines a norm ‖h‖G = 〈h,Gh〉1/2. Then

S(if) ≤ e8〈h,Gh〉2
nT = e2

n+3T‖h‖2G .

Raising this to the power 2−n−2, and taking the n → ∞ limit we see that
the factors ‖A‖2−n

E ‖A‖2−n

L4 approach 1, and thus (4.23) becomes:〈
Â, e−(H0+ϕ(h))T Â

〉
H
≤ e2T‖h‖

2
G‖Â‖2H.

This establishes (4.21), completing the proof of Theorem 4.5.

4.6 Fock representation for time-zero fields

To obtain a Fock representation of the time-zero fields we mimic the con-
struction of [23, § 6.3] with the covariance (4.20).

To simplify the constructions in this section, we assume the form ds2 =
dt2 +Gµνdx

µdxν and F = 1. Then Q = ∆Σ , the Laplacian on the time-zero
slice, and µ = (−∆Σ + m2)1/2. The set of functions h ∈ L2(Σ) such that
µph ∈ L2(Σ) is precisely the Sobolev space Hp(Σ), which is also the set of
h such that C−ph ∈ L2. Sobolev spaces satisfy the reverse inclusion relation
p ≥ q ⇒ Hq ⊆ Hp. Also Cqf ∈ Hp ⇔ f ∈ Hq−p.

This allows us to determine the natural space of test functions for the
definition of the Fock representations:

a(f) =
1
2
φ

(
C−1/2f

)
+ iπ

(
C1/2f

)
a∗(f) =

1
2
φ

(
C−1/2f

)
− iπ

(
C1/2f

)
.

In particular, if the natural domain of φ is H−1 as discussed following
eqn. (1.3), then f must lie in the space where C−1/2f ∈ H−1, i.e. f ∈ H1/2.

5 Conclusions and Outlook

We have successfully generalized Osterwalder-Schrader quantization and
several basic results of constructive field theory to the setting of static space-
times.

Dimock [14] constructed an interacting P(ϕ)2 model with variable co-
efficients, with interaction density ρ(t, x) : ϕ(x)4 :, and points out that a
Riemannian (ϕ4)2 theory may be reduced to a Euclidean (ϕ4)2 theory with
variable coefficients. However, the main constructions of [14] apply to the
Lorentzian case and for curved spacetimes no analytic continuation between
them is known. Establishing the analytic continuation is clearly a priority.
Also, there are certain advantages to a perspective which remembers the
spacetime structure; for example, in this picture the procedure for quantiz-
ing spacetime symmetries is more apparent.
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In the present paper we have not treated the case of a non-linear field,
though all of the groundwork is in place. Such construction would necessarily
involve a generalization of the Feynman-Kac integral (2.11) to curved space,
and would have far-reaching implications, and one would like to establish
properties of the particle spectrum for such a theory.

The treatment of symmetry in this paper is only preliminary. We have
isolated two classes of isometries, the reflected and reflection-invariant isome-
tries, which have well-defined quantizations. We believe that this construc-
tion can be extended to yield a unitary representation of the isometry group,
and work on this is in progress. This, together with suitable extensions
of section 2.6 could have implications for the representation theory of Lie
groups, as is already the case for the geometric quantization of classical
Hamiltonian systems.

The treatment of variation of the metric in section 3 is also prelimi-
nary; it does not cover the full class of static spacetimes. Geroch [19] gave
a rigorous definition of the limit of a family of spacetimes, which formal-
izes the sense in which the Reissner-Nordström black hole becomes the
Schwarzschild black hole in the limit of vanishing charge. It would be in-
teresting to combine the present framework with Geroch’s work to study
rigorously the properties of the quantum theory under a limit of spacetimes.

Another direction is to isolate specific spacetimes suggested by physics
which have high symmetry or other special properties, and then to extend
the methods of constructive field theory to obtain mathematically rigor-
ous proofs of such properties. Several studies along these lines exist [7, 26],
but there is much more to be done. We hope that the Euclidean functional
integral methods developed here may facilitate further progress. Rigorous
analysis of thermal properties such as Hawking radiation should be possi-
ble. Given that new mathematical methods are available which pertain to
Euclidean quantum field theory in AdS, a complete, rigorous understanding
of the holographically dual theory on the boundary of AdS suggested by
Maldacena [1, 24, 36, 45] may be within reach of present methods.

Constructive field theory on flat spacetimes has been developed over
four decades and comprises thousands of published journal articles. Every
statement in each of those articles is either: (i) an artifact of the zero cur-
vature and high symmetry of Rd or Td or (ii) generalizable to curved spaces
with less symmetry. The present paper shows that the Osterwalder-Schrader
construction and many of its consequences are in class (ii). For each con-
struction in class (ii), investigation is likely to yield non-trivial connections
between geometry, analysis, and physics.

Acknowledgements We would like to thank Jonathan Weitsman and Joachim
Krieger for interesting discussions, and Jon Dimock for his earlier work
[14, 15] which sparked our interest in these models.
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A Euclidean Anti-de Sitter and its Analytic Continuation

The Green’s function G on a general curved manifold is the inverse of the
corresponding positive transformation, so it satisfies

(∆− µ2)G = −g−1/2δ , (A.1)

where G(p, q) is a function of two spacetime points. By convention ∆ acts on
G in the first variable, and δ denotes the Dirac distribution of the geodesic
distance d = d(p, q). Translation invariance implies that G only depends on
p and q through d(p, q). We note that solutions of the homogeneous equation
(∆− µ2)φ = 0 may be recovered from the Green’s function. Conversely, we
may deduce the Green’s function by solving the homogeneous equation for
d > 0 and enforcing the singularity at d = 0.

The equation (A.1) for the Green’s function takes a simple form in
geodesic polar coordinates on Hn with r = d = geodesic distance; the
Green’s function has no dependence on the angular variables and the radial
equation yields(

∂2
r + (n− 1) coth(r)∂r − µ2

)
G(r) = −δ(r) . (A.2)

We find it convenient to write the homogeneous equation in terms of the
coordinate u = cosh(r). When u 6= 1, (A.2) becomes

(∆− µ2)G(u) = −(1− u2)G′′(u) + nuG′(u)− µ2G(u) = 0 . (A.3)

For n = 2 and µ2 = ν(ν + 1), eqn. (A.3) is equivalent to Legendre’s differ-
ential equation:

(1− u2)Q′′ν(u)− 2uQ′ν(u) + ν(ν + 1)Qν(u) = 0 . (A.4)

Note that (A.4) has two independent solutions for each ν, called Legendre’s
P and Q functions, but the Q function is selected because it has the correct
singularity at r = 0. Thus

G2(r;µ2) =
1

2π
Qν(cosh r), where ν = −1

2
+

(
µ2 +

1
4

)1/2

. (A.5)

The case µ2 = 0 is particularly simple; there the Legendre function becomes
elementary:

G2(r; 0) = − 1
2π

ln
(

tanh
r

2

)
=

1
2π
Q0(cosh r) . (A.6)

For n = 3, one has

G3(r;µ2) =
1

4π
e±r

√
µ2+1

sinh(r)
. (A.7)

Finally, we note that the analytic continuation of (A.5) gives the Wightman
function on AdS2. The real-time theory on Anti-de Sitter, including its
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Wightman functions, were discussed by Bros et al. [7]. In particular, our
equation (A.5) analytically continues to their equation (6.8).

Given a complete set of modes, one may also calculate the Feynman
propagator by using the relation iGF (x, x′) = 〈 0 |T{φ(x)φ(x′)} | 0 〉 and
performing the mode sum explicitly as in [9]; the answer may be seen to
be related to the above by analytic continuation. Here, T denotes an AdS-
invariant time-ordering operator. A good general reference is the classic
paper [3].
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